triplex structure
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 118 (14) ◽  
pp. e2026656118
Author(s):  
Seyed-Fakhreddin Torabi ◽  
Yen-Lin Chen ◽  
Kaiming Zhang ◽  
Jimin Wang ◽  
Suzanne J. DeGregorio ◽  
...  

Cis-acting RNA elements are crucial for the regulation of polyadenylated RNA stability. The element for nuclear expression (ENE) contains a U-rich internal loop flanked by short helices. An ENE stabilizes RNA by sequestering the poly(A) tail via formation of a triplex structure that inhibits a rapid deadenylation-dependent decay pathway. Structure-based bioinformatic studies identified numerous ENE-like elements in evolutionarily diverse genomes, including a subclass containing two ENE motifs separated by a short double-helical region (double ENEs [dENEs]). Here, the structure of a dENE derived from a rice transposable element (TWIFB1) before and after poly(A) binding (∼24 kDa and ∼33 kDa, respectively) is investigated. We combine biochemical structure probing, small angle X-ray scattering (SAXS), and cryo‐electron microscopy (cryo-EM) to investigate the dENE structure and its local and global structural changes upon poly(A) binding. Our data reveal 1) the directionality of poly(A) binding to the dENE, and 2) that the dENE-poly(A) interaction involves a motif that protects the 3ʹ-most seven adenylates of the poly(A). Furthermore, we demonstrate that the dENE does not undergo a dramatic global conformational change upon poly(A) binding. These findings are consistent with the recently solved crystal structure of a dENE+poly(A) complex [S.-F. Torabi et al., Science 371, eabe6523 (2021)]. Identification of additional modes of poly(A)–RNA interaction opens new venues for better understanding of poly(A) tail biology.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 326
Author(s):  
Luca Guerrini ◽  
Ramon A. Alvarez-Puebla

Direct, label-free analysis of nucleic acids via surface-enhanced Raman spectroscopy (SERS) has been continuously expanding its range of applications as an intriguing and powerful analytical tool for the structural characterization of diverse DNA structures. Still, interrogation of nucleic acid tertiary structures beyond the canonical double helix often remains challenging. In this work, we report for the first time the structural identification of DNA triplex structures. This class of nucleic acids has been attracting great interest because of their intriguing biological functions and pharmacological potential in gene therapy, and the ability for precisely engineering DNA-based functional nanomaterials. Herein, structural discrimination of the triplex structure against its duplex and tertiary strand counterparts is univocally revealed by recognizing key markers bands in the intrinsic SERS fingerprint. These vibrational features are informative of the base stacking, Hoogsteen hydrogen bonding and sugar–phosphate backbone reorganization associated with the triple helix formation. This work expands the applicability of direct SERS to nucleic acids analysis, with potential impact on fields such as sensing, biology and drug design.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yukiko Kamiya ◽  
Tadashi Satoh ◽  
Atsuji Kodama ◽  
Tatsuya Suzuki ◽  
Keiji Murayama ◽  
...  

Abstract Xeno nucleic acids, which are synthetic analogues of natural nucleic acids, have potential for use in nucleic acid drugs and as orthogonal genetic biopolymers and prebiotic precursors. Although few acyclic nucleic acids can stably bind to RNA and DNA, serinol nucleic acid (SNA) and L-threoninol nucleic acid (L-aTNA) stably bind to them. Here we disclose crystal structures of RNA hybridizing with SNA and with L-aTNA. The heteroduplexes show unwound right-handed helical structures. Unlike canonical A-type duplexes, the base pairs in the heteroduplexes align perpendicularly to the helical axes, and consequently helical pitches are large. The unwound helical structures originate from interactions between nucleobases and neighbouring backbones of L-aTNA and SNA through CH–O bonds. In addition, SNA and L-aTNA form a triplex structure via C:G*G parallel Hoogsteen interactions with RNA. The unique structural features of the RNA-recognizing mode of L-aTNA and SNA should prove useful in nanotechnology, biotechnology, and basic research into prebiotic chemistry.


2020 ◽  
Vol 38 ◽  
pp. 57-62
Author(s):  
Masatoshi Sunaga ◽  
Dai Motegi ◽  
Yuya Motegi ◽  
Kazuo Shinozuka ◽  
Tomohisa Moriguchi

Antigene technology is the one strategy for the artificial regulation of gene expression by the formation of triple structure on triplex forming oligonucleotide (TFO) with dsDNA. For the enhancement of the thermal stability of triplex structure, photo-crosslinking reaction is attractive by the covalent bond formation between TFO and dsDNA. In this paper, we designed the novel TFOs containing benzophenone moiety as a photo-crosslinkable agent. Several types of glycol nucleoside analogs having glycol scaffold and benzophenone residues with different linker length were prepared, and the these were incorporated into TFOs. The thermal stability of triplex and the photo-crosslinking reaction efficiency of TFOs toward dsDNA was systematically evaluated.


2019 ◽  
Vol 47 (15) ◽  
pp. e86-e86 ◽  
Author(s):  
Ning Li ◽  
Junli Wang ◽  
Kangkang Ma ◽  
Lin Liang ◽  
Lipei Mi ◽  
...  

Abstract A telomere carrying repetitive sequences ends with a single-stranded overhang. The G-rich overhang could fold back and bind in the major groove of its upstream duplex, forming an antiparallel triplex structure. The telomeric triplex has been proposed to function in protecting chromosome ends. However, we lack strategies to mechanically probe the dynamics of a telomeric triplex. Here, we show that the topological dynamics of a telomeric triplex involves 3′ overhang binding at the ds/ssDNA junction inferred by DNA mechanics. Assisted by click chemistry and branched polymerase chain reaction, we developed a rescue-rope-strategy for mechanically manipulating an artificial telomeric DNA with a free end. Using single-molecule magnetic tweezers, we identified a rarely forming (5%) telomeric triplex which pauses at an intermediate state upon unzipping the Watson–Crick paired duplex. Our findings revealed that a mechanically stable triplex formed in a telomeric DNA can resist a force of 20 pN for a few seconds in a physiological buffer. We also demonstrated that the rescue-rope-strategy assisted mechanical manipulation can directly rupture the interactions between the third strand and its targeting duplex in a DNA triplex. Our single-molecule rescue-rope-strategy will serve as a general tool to investigate telomere dynamics and further develop triplex-based biotechnologies.


2019 ◽  
Vol 17 (38) ◽  
pp. 8726-8736 ◽  
Author(s):  
Laureen Bonnat ◽  
Maelle Dautriche ◽  
Taous Saidi ◽  
Johana Revol-Cavalier ◽  
Jérôme Dejeu ◽  
...  

We have assembled a DNA conjugate which folds into a stable G-triplex structure and used it to demonstrate the binding promiscuity of G-quadruplex targeting ligands.


2018 ◽  
Vol 20 (20) ◽  
pp. 14013-14023 ◽  
Author(s):  
Belinda J. Boehm ◽  
Charles Whidborne ◽  
Alexander L. Button ◽  
Tara L. Pukala ◽  
David M. Huang

Molecular dynamics simulations are used to elucidate the structure and thermodynamics of DNA triplexes associated with the neurodegenerative disease Friedreich's ataxia (FRDA), as well as complexes of these triplexes with the small molecule netropsin, which is known to destabilise triplexes.


2017 ◽  
Vol 45 (17) ◽  
pp. 10032-10041 ◽  
Author(s):  
Jin Chen ◽  
Qingnan Tang ◽  
Shiwen Guo ◽  
Chen Lu ◽  
Shimin Le ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document