transcription suppression
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Duolong Zhu ◽  
Shaohui Wang ◽  
Xingmin Sun

Clostridioides difficile flagellin FliC is associated with toxin gene expression, bacterial colonization, and virulence, and is also involved in pleiotropic gene regulation during in vivo infection. However, how fliC expression is regulated in C. difficile remains unclear. In Bacillus subtilis, flagellin homeostasis and motility are coregulated by flagellar assembly factor (FliW), flagellin Hag (FliC homolog), and Carbon storage regulator A (CsrA), which is referred to as partner-switching mechanism “FliW-CsrA-Hag.” In this study, we characterized FliW and CsrA functions by deleting or overexpressing fliW, csrA, and fliW-csrA in C. difficile R20291. We showed that fliW deletion, csrA overexpression in R20291, and csrA complementation in R20291ΔWA (fliW-csrA codeletion mutant) dramatically decreased FliC production, but not fliC gene transcription. Suppression of fliC translation by csrA overexpression can be relieved mostly when fliW was coexpressed, and no significant difference in FliC production was detected when only fliW was complemented in R20291ΔWA. Further, loss of fliW led to increased biofilm formation, cell adhesion, toxin production, and pathogenicity in a mouse model of C. difficile infection (CDI), while fliW-csrA codeletion decreased toxin production and mortality in vivo. Our data suggest that CsrA negatively modulates fliC expression and FliW indirectly affects fliC expression through inhibition of CsrA post-transcriptional regulation. In light of “FliW-CsrA-Hag” switch coregulation mechanism reported in B. subtilis, our data also suggest that “FliW-CsrA-fliC/FliC” can regulate many facets of C. difficile R20291 pathogenicity. These findings further aid us in understanding the virulence regulation in C. difficile.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 592
Author(s):  
Huiling Xu ◽  
Zehui Liu ◽  
Suya Zheng ◽  
Guangwei Han ◽  
Fang He

CD163 has been identified as the essential receptor for Porcine reproductive and respiratory syndrome (PRRSV), a major etiologic agent of pigs. Scavenger receptor cysteine-rich domain 5–9 (SRCR5–9) in CD163 was shown to be responsible for the virus interaction. In this study, monoclonal antibodies (mAbs) 6E8 and 9A10 against SRCR5–9 were selected based on the significant activity to inhibit PRRSV infection in Porcine Alveolar Macrophage (PAMs) and Marc-145. Both mAbs are capable of blocking variable PRRSV strains in a dose-dependent manner. Meanwhile, as candidates for both prevention and therapeutics, the antibodies successfully inhibit PRRSV infection and the related NF-κB pathway either before or after virus attachment. Besides, the antibody treatment with either mAb leads to a remarkable decrease of CD163 transcription in PAMs and Marc-145. It is potentially caused by the excessive accumulation of membrane associated CD163 due to the failure in CD163 cleavage with the antibody binding. Further, conformational epitopes targeted by 6E8 and 9A10 are identified to be spanning residues 570SXDVGXV576 in SRCR5 and Q797 in SRCR7, respectively. CD163 with mutated epitopes expressed in 3D4 cells fails to support PRRSV infection while wild type CD163 recovers PRRSV infection, indicating the critical role of these residues in PRRSV invasion. These findings promote the understanding in the interaction between PRRSV and the receptor and provide novel broad antiviral strategies for PRRSV prevention and treatment via alternative mechanisms.


2020 ◽  
Vol 6 (42) ◽  
pp. eabb5953
Author(s):  
Satoru Ide ◽  
Ryosuke Imai ◽  
Hiroko Ochi ◽  
Kazuhiro Maeshima

The nucleolus is a nuclear body with multiphase liquid droplets for ribosomal RNA (rRNA) transcription. How rRNA transcription is regulated in the droplets remains unclear. Here, using single-molecule tracking of RNA polymerase I (Pol I) and chromatin-bound upstream binding factor (UBF), we reveal suppression of transcription with phase separation. For transcription, active Pol I formed small clusters/condensates that constrained rDNA chromatin in the nucleolus fibrillar center (FC). Treatment with a transcription inhibitor induced Pol I to dissociate from rDNA chromatin and to move like a liquid within the nucleolar cap that transformed from the FC. Expression of a Pol I mutant associated with a craniofacial disorder inhibited transcription by competing with wild-type Pol I clusters and transforming the FC into the nucleolar cap. The cap droplet excluded an initiation factor, ensuring robust silencing. Our findings suggest a mechanism of rRNA transcription suppression via phase separation of intranucleolar molecules governed by Pol I.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Seidu A. Richard ◽  
Zhou Jia-hao

Glioblastoma (GB) is an extremely pugnacious brain cancer originating from neural stem (NS) cell-like cells. Forkhead box G1 (FOXG1; previously recognized as BF-1, qin, Chicken Brain Factor 1, or XBF-1 and renamed FOXG1 for mouse and human, and FoxG1 for other chordates) is an evolutionary preserved transcription factor driven from the forkhead box group of proteins FOXG1 modulates the speed of neurogenesis by maintaining progenitor cells in a proliferative mode as well as obstructing their differentiation into neurons during the initial periods of cortical formation. FOXG1 has been implicated in the formation of central nervous system (CNS) tumors and precisely GBs. Pathophysiologically, joint actions of FOXG1 and phosphatidylinositol- 3-kinases (PI3K) intermediate in intrinsic resistance of human GB cells to transforming growth factor-beta (TGF-β) stimulation of cyclin-dependent kinase inhibitor 1(p21Cip1) as well as growth inhibition. FOXG1 and NOTCH signaling pathways may functionally interrelate at different stages to facilitate gliomagenesis. Furthermore, FoxG1 actively contributed to the formation of transcription suppression complexes with corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLEs). Also, FOXG1 was stimulated by Gro/TLE1 and abridged by Grg6. FOXG1 silencing in brain tumor-initiating cells (BTICs) also resulted in diminished secretion of markers characteristic undifferentiated natural neural stem/progenitor cells (NSPC) states, such as Oligodendrocyte transcription factor (OLIG2), (sex determining region Y)-box 2. (SOX2) and B lymphoma Mo-MLV insertion region 1 homolog (BMI1). This review therefore focuses on the pathogenic and biomarker potentials of FOXG1 in GB.


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227923 ◽  
Author(s):  
Byoungnam Min ◽  
Hyeokjun Yoon ◽  
Julius Park ◽  
Youn-Lee Oh ◽  
Won-Sik Kong ◽  
...  

2017 ◽  
Vol 139 (25) ◽  
pp. 8444-8447 ◽  
Author(s):  
Takuya Hidaka ◽  
Ganesh N. Pandian ◽  
Junichi Taniguchi ◽  
Tomohiro Nobeyama ◽  
Kaori Hashiya ◽  
...  

2012 ◽  
Vol 72 (4 Supplement) ◽  
pp. B12-B12
Author(s):  
Changmeng Cai ◽  
Housheng He ◽  
Sen Chen ◽  
X. Shirley Liu ◽  
Myles Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document