fluorocarbon films
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 5)

H-INDEX

25
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4023
Author(s):  
Alžbeta Kuižová ◽  
Anna Kuzminova ◽  
Ondřej Kylián ◽  
Eva Kočišová

Raman spectroscopy is one of the most used biodetection techniques. However, its usability is hampered in the case of low concentrated substances because of the weak intensity of the Raman signal. To overcome this limitation, the use of drop coating deposition Raman spectroscopy (DCDRS), in which the liquid samples are allowed to dry into well-defined patterns where the non-volatile solutes are highly concentrated, is appropriate. This significantly improves the Raman sensitivity when compared to the conventional Raman signal from solution/suspension. As DCDRS performance strongly depends on the wetting properties of substrates, we demonstrate here that the smooth hydrophobic plasma polymerized fluorocarbon films prepared by magnetron sputtering (contact angle 108°) are well-suited for the DCDRS detection of liposomes. Furthermore, it was proved that even better improvement of the Raman signal might be achieved if the plasma polymer surfaces are roughened. In this case, 100% higher intensities of Raman signal are observed in comparison with smooth fluorocarbon films. As it is shown, this effect, which has no influence on the profile of Raman spectra, is connected with the increased hydrophobicity of nanostructured fluorocarbon films. This results in the formation of dried liposomal deposits with smaller diameters and higher preconcentration of liposomes.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 848 ◽  
Author(s):  
Qi Zhao ◽  
Feipeng Wang ◽  
Kaizheng Wang ◽  
Guibai Xie ◽  
Wanzhao Cui ◽  
...  

In this work, fluorocarbon film was deposited on silicon (P/100) substrate using polytetrafluoroethylene (PTFE) as target material at elevated sputtering temperature. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed to investigate the surface morphology as well as structural and chemical compositions of the deposited film. The surface energy, as well as the polar and dispersion components, were determined by water contact angle (WCA) measurement. The experimental results indicated that increasing sputtering temperature effectively led to higher deposition rate, surface roughness and WCA of the film. It was found that the elevated temperature contributed to increasing saturated components (e.g., C–F2 and C–F3) and decreasing unsaturated components (e.g., C–C and C–CF), thus enhancing the fluorine-to-carbon (F/C) ratio. The results are expected aid in tailoring the design of fluorocarbon films for physicochemical properties.


2018 ◽  
Vol 18 (9) ◽  
pp. 6288-6293
Author(s):  
Se-Bi Jung ◽  
Youn-Jeong Cho ◽  
Jihye Lee ◽  
Kang-Bong Lee ◽  
Yeonhee Lee

2016 ◽  
Vol 31 (8) ◽  
pp. 1027-1037 ◽  
Author(s):  
Nandini G. Sundaram ◽  
Seetharaman Ramachandran ◽  
Lawrence Overzet ◽  
Matthew Goeckner ◽  
Gil-Sik Lee

Abstract


2. Adhesion of the plasma-polymerized fluorocarbon films to silicon substrates The adhesion properties of the plasma-polymerized FC coatings were determined by using a test, already employed by Yasuda and Sharma [13] (see Fig. 1 and Table 1) in which the silicon substrates coated with plasma FC-films were boiled in a0.9% sodium chloride solution. The FC thin films produced in the processes 1 and 2 were lifted after a very short time (15 minutes). Coatings generated in process 3 were lifted after the second cycle of boiling. The films produced in processes 4 and 5 withstood the complete test procedure. The results are shown in Fig. 3. The poor adhesion of the polymerized films in the first two processes is due to the fact that these processes do not involve a plasma pre-treatment process. The difference between processes 1 and 3 is only in the plasma pre-treatment (process 1 does not contain the pre-treatment step of the silicon surface). The fluorocarbon films deposited by processes 4 and 5 have shown the best adhesion. These test results indicate that the plasma pre-treatment is very important and necessary for a good adhesion of the FC coatings to the silicon surfaces. 2.3. Patterning of FC films 2.3.1. Patterning through resist mask. The patterning of the FC films through a photoresist mask (conventional All resist AR-P351) was examined after deposition for process No. 5. Different coating parameters were investigated to improve the adhesion of the resist to the FC surface. The best adhesion results were obtained using the process parameters, shown in Table 3. Differences in the thickness uniformity of so-deposited resists were in a range below 5%. The samples were etched in a pure oxygen plasma in an RIE-system after the lithography steps (pre-bake, exposure, development, post-bake). A resolution of 2 /xm was obtained. A significant increase in the surface energy was not observed after resist stripping. The sessile contact angle of water was 103°. 2.3.2. Lift-off process for patterning thin plasma polymerized FC films. A lift-off process was also examined to pattern the thin FC films. The lithography steps were used before the plasma polymerization process was carried out (Fig. 2). A standard resist AR-P351 was coated directly onto the Si substrates. After all lithography

2014 ◽  
pp. 275-278

Sign in / Sign up

Export Citation Format

Share Document