catalyst utilization
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Xingyi Deng ◽  
Dominic Alfonso ◽  
Thuy-Duong Nguyen-Phan ◽  
Douglas Kauffman

Abstract Coinage metals (Au, Cu and Ag) are state-of-the-art electrocatalysts for the CO2 reduction reaction (CO2RR). Size-dependent CO2RR activity of Au and Cu has been studied, and increased H2 evolution reaction (HER) activity is expected for small catalyst particles with high population of undercoordinated corner sites. A similar consensus is still lacking for Ag catalysts because the ligands and stabilizers typically used to control particle synthesis can block specific active sites and mask inherent structure-property trends. This knowledge gap is problematic because increased performance and catalyst utilization are still needed to improve economic viability. We combined density functional theory, microkinetic modeling, and experiment to demonstrate a strong size-dependence for pristine Ag particles in the sub-10 nm range. Small diameter particles with a high population of Ag edge sites were predicted to favor HER, whereas CO2RR selectivity increased towards that of bulk Ag for larger diameter particles as the population of Ag(100) surface sites grew. Experimental results validated these predictions and we identified an optimal particle diameter of 8-10 nm that balanced selectivity and activity. Particles below this diameter suffered from poor selectivity, while larger particles demonstrated bulk-like activity and reduced catalyst utilization. These results demonstrate the size-dependent CO2RR activity of pristine Ag catalysts and will help guide future development efforts.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3832
Author(s):  
Irene Gatto ◽  
Ada Saccà ◽  
David Sebastián ◽  
Vincenzo Baglio ◽  
Antonino Salvatore Aricò ◽  
...  

Perfluorinated sulfonic acid (PFSA) polymers such as Nafion® are widely used for both electrolyte membranes and ionomers in the catalytic layer of membrane-electrode assemblies (MEAs) because of their high protonic conductivity, σH, as well as chemical and thermal stability. The use of PFSA polymers with shorter side chains and lower equivalent weight (EW) than Nafion®, such as Aquivion® PFSA ionomers, is a valid approach to improve fuel cell performance and stability under drastic operative conditions such as those related to automotive applications. In this context, it is necessary to optimize the composition of the catalytic ink, according to the different ionomer characteristics. In this work, the influence of the ionomer amount in the catalytic layer was studied, considering the dispersing agent used to prepare the electrode (water or ethanol). Electrochemical studies were carried out in a single cell in the presence of H2-air, at intermediate temperatures (80–95 °C), low pressure, and reduced humidity (50% RH. %). The best fuel cell performance was found for 26 wt.% Aquivion® at the electrodes using ethanol for the ink preparation, associated to a maximum catalyst utilization.


2021 ◽  
Vol MA2021-02 (41) ◽  
pp. 1272-1272
Author(s):  
Zhiqiang Xie ◽  
Shule Yu ◽  
Gaoqiang Yang ◽  
Kui Li ◽  
Lei Ding ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1787
Author(s):  
Zhixin Chang ◽  
Jiajia Zhang ◽  
Weiqi Zhang ◽  
Huaneng Su ◽  
Lei Xing ◽  
...  

Direct methanol fuel cells (DMFCs) offer high energy density, simple liquid fuel storage, and the ability to operate at ambient temperature. They may be used in a variety of portable mobile power supplies, small civilian power supplies, and automotive power supplies. However, in the process of electrochemical reaction inside a DMFC, because the reactants and products are distributed unevenly, the in-plane concentration of reactants and reaction rate are different; thus, the current density generated in the active area shows a high degree of non-uniformity. The high local current density can easily lead to the acceleration of DMFC aging. As a result, the operating cost of the DMFC is increased and the service life is shortened, which limits the commercial application of DMFCs. In this work, we develop an in-plane gradient loading catalyst. The loading on both the anode and cathode catalysts was lower near the inlet and higher close to the outlet. The experimental results of the single-cell test show that the performance of the gradient loading catalyst electrode was enhanced by up to 19.8% compared with the uniform loading catalyst at 60 °C for the same catalyst loading, especially under high current densities. In addition, the catalyst utilization was improved for the gradient loading catalyst electrode. Hence, the proposed approach shows potential for reducing the cost and increasing the service life of DMFCs.


2021 ◽  
Author(s):  
Charles Wan ◽  
Katharine Greco ◽  
Amira Alazmi ◽  
Robert Darling ◽  
Yet- Ming Chiang ◽  
...  

<p>Electrochemical reactors often employ high surface area electrocatalysts to accelerate volumetric reaction rates and increase productivity. While electrocatalysts can alleviate kinetic overpotentials, diffusional resistances at the pore-scale often prevent full catalyst utilization. The effect of intraparticle diffusion on the overall reaction rate can be quantified through an effectiveness factor expression governed by the Thiele modulus parameter. This analytical approach is integral to the development of catalytic structures for thermochemical processes and can be extended to electrochemical processes provided the relationship between reaction kinetics and electrode overpotential is incorporated. Here, we derive a potential-dependent Thiele modulus to quantify the effectiveness factor for porous electrocatalytic structures. We apply this mathematical framework to spherical microparticles as a function of applied overpotential across catalyst properties and reactant characteristics. The relative effects of kinetics and mass transport are related to overall reaction rates, revealing markedly lower catalyst utilization at increasing overpotential. Subsequently, we generalize the analysis to alternative catalyst shapes and provide guidance on the design of porous catalytic materials for use in electrochemical reactors.</p>


2021 ◽  
Author(s):  
Charles Wan ◽  
Katharine Greco ◽  
Amira Alazmi ◽  
Robert Darling ◽  
Yet- Ming Chiang ◽  
...  

<p>Electrochemical reactors often employ high surface area electrocatalysts to accelerate volumetric reaction rates and increase productivity. While electrocatalysts can alleviate kinetic overpotentials, diffusional resistances at the pore-scale often prevent full catalyst utilization. The effect of intraparticle diffusion on the overall reaction rate can be quantified through an effectiveness factor expression governed by the Thiele modulus parameter. This analytical approach is integral to the development of catalytic structures for thermochemical processes and can be extended to electrochemical processes provided the relationship between reaction kinetics and electrode overpotential is incorporated. Here, we derive a potential-dependent Thiele modulus to quantify the effectiveness factor for porous electrocatalytic structures. We apply this mathematical framework to spherical microparticles as a function of applied overpotential across catalyst properties and reactant characteristics. The relative effects of kinetics and mass transport are related to overall reaction rates, revealing markedly lower catalyst utilization at increasing overpotential. Subsequently, we generalize the analysis to alternative catalyst shapes and provide guidance on the design of porous catalytic materials for use in electrochemical reactors.</p>


Author(s):  
Jinghui Jiang ◽  
Xianda Sun

Abstract Constructing the ordered catalyst layer is one of the most effective strategies to maximize the catalyst utilization in direct methanol fuel cells. To gain insight into the mass and charge transports in ordered catalyst layer, herein, a 2D two-phase mass-transport model involving Knudsen diffusion was proposed. It is found that the simulation results of the model with Knudsen diffusion are more consistent with the experimental results than that of the model without Knudsen diffusion. It has been demonstrated that higher porosity near the oxygen diffusion layer facilitates the oxygen transport, and the optimal porosity is obtained by balancing mass and charge transport resistances in the ordered catalyst layer. In contrast, higher catalyst loading near membrane improves the cell performance significantly. The highest peak power density of 56.5 mW cm-2 is achieved, when the catalyst loading of the outer and inner layer is 0.15 mg cm-2 and 0.85 mg cm-2, respectively.


2021 ◽  
Vol 678 (1) ◽  
pp. 012036
Author(s):  
Farid Gumerov ◽  
Timur Bilalov ◽  
Vener Khairutdinov ◽  
Zufar Zaripov ◽  
Alfiya Gubaidullina ◽  
...  

2020 ◽  
Vol 59 (40) ◽  
pp. 17720-17728
Author(s):  
Prathap Challa ◽  
Siva Sankar Enumula ◽  
Saidulu Reddy K ◽  
Murali Kondeboina ◽  
David Raju Burri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document