transonic centrifugal compressor
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Qingkuo Li ◽  
Yingjie Zhang ◽  
Yi Wang ◽  
Ge Han ◽  
Yanfeng Zhang ◽  
...  

Vaned diffuser inlet flow uniform is challenging when the impeller is throttled to stall. In this study, we extend the stable operating range of the compressor by improving the uniform flow of the diffuser inlet. First, a numerical investigation of a transonic centrifugal compressor with a vaned diffuser is presented and compared against test data. Then, a new diffuser parameterization method is pro- posed, and the throat feature of a pipe diffuser is successfully applied to parameterized vane diffusers. The influence of the throat length and divergence angle of the diffuser on the performance of the centrifugal compressor is studied via steady and non-linear harmonic simulations. Throat length delays the time of fluid pressurization and accommodates large flow instabilities from upstream—this widens the stall margin but increases mixing loss. Divergence angle affects compressor performance. Stage peak efficiency increases by about 0.58% as the divergence angle increases from 3.79° to 5.79° but drops to about 2.46% as the divergence angle further increases from 5.79° to 11.79°. This is because the boundary layers in the diffuser channel thicken with increasing divergence angle; additionally, the fluid near the hub-pressure side first becomes unstable, then flow separation occurs along the flow direction, which results in a large flow loss. Detailed performance maps of centrifugal compressors with different throat lengths and divergence angles are given to provide a reference for designing transonic centrifugal compressors.


2021 ◽  
Author(s):  
Sasuga ITO ◽  
Masato Furukawa ◽  
Satoshi Gunjishima ◽  
Takafumi Ota ◽  
Kazuhito Konishi ◽  
...  

2021 ◽  
Author(s):  
Kazutoyo Yamada ◽  
Kosuke Kubo ◽  
Kenichiro Iwakiri ◽  
Yoshihiro Ishikawa ◽  
Hirotaka Higashimori

Abstract This paper discusses the unsteady effects associated with the impeller/diffuser interaction on the internal flow field and aerodynamic performance of a centrifugal compressor. In centrifugal compressors with a vaned diffuser, the flow field is inherently unsteady due to the influence of interaction between the impeller and the diffuser, and the unsteadiness of the flow field can often have a great influence on the aerodynamic performance of the compressor. Especially in high-load compressors, it is considered that large unsteady effects are produced on the compressor performance with a strong flow unsteadiness. The unsteady effect on aerodynamic performance of the compressor has not been fully revealed yet, and sometimes the steady-state RANS simulation finds it difficult to predict the compressor performance. In this study, numerical simulations have been conducted for a transonic centrifugal compressor with a vaned diffuser. The unsteady effects were clarified by comparing the numerical results between a single-passage steady-state RANS analysis and a full-annulus unsteady RANS analysis. The comparison of simulation results showed the difference in entropy generation in the impeller. The impingement of diffuser shock wave with the impeller pressure surface brought about a cyclic increase in the blade loading near the impeller trailing edge. Accordingly, with increasing tip leakage flow rate, a second tip leakage vortex was newly generated in the aft part of the impeller, which resulted in additional unsteady loss generation inside the impeller.


2021 ◽  
Vol 11 (7) ◽  
pp. 3191
Author(s):  
Ali Zamiri ◽  
Kun Sung Park ◽  
Minsuk Choi ◽  
Jin Taek Chung

The demands to apply transonic centrifugal compressor have increased in the advanced gas turbine engines. Various techniques are used to increase the aerodynamic performance of the centrifugal compressor. The effects of the inclined leading edges in diffuser vanes of a transonic centrifugal compressor on the flow-field unsteadiness and noise generation are investigated by solving the compressible, three-dimensional, transient Navier–Stokes equations. Diffuser vanes with various inclination angles of the leading edge from shroud-to-hub and hub-to-shroud are numerically modeled. The results show that the hub-to-shroud inclined leading edge improves the compressor performance (2.6%), and the proper inclination angle is effective to increase the stall margin (3.88%). In addition, in this study, the transient pressure variations and radiated noise prediction at the design operating point of the compressor are emphasized. The influences of the inclined leading edges on the pressure waves were captured in time/space domain with different convective velocities. The pressure fluctuation spectra are calculated to investigate the tonal blade passing frequency (BPF) noise, and it is shown that the applied inclination angles in the diffuser blades are effective, not only to improve the aerodynamic performance and stall margin, but also to reduce the BPF noise (7.6 dB sound pressure level reduction). Moreover, it is found that the diffuser vanes with inclination angles could suppress the separation regions and eddy structures inside the passages of the diffuser, which results in reduction of the overall sound pressure level and the broadband noise radiated from the compressor.


Author(s):  
Sasuga Ito ◽  
Masato Furukawa ◽  
Satoshi Gunjishima ◽  
Takafumi Ota ◽  
Kazuhito Konishi ◽  
...  

Abstract Inlet distortion has influence on the aerodynamic performance of turbomachinery such as compressors, turbines and fans. On turbochargers, bent pipes are installed around the compressor due to the spatial limitations in the engine room of the vehicle. As the result, the compressor is operated with the distorted inflow. In the low flow rate operation, the distorted inflow also affects the flow instability like stall and surge. Especially, the operation range on the low flow rate side is defined based on the flow rate where surge occurs, so it is important to investigate the effect of the distorted inflow on surge. In this study, the effect of the inlet distortion to surge phenomena has been investigated by the experiments with a transonic centrifugal compressor. A bent pipe has been installed at the upstream of the compressor to generate a distorted flow. Experiments have been also conducted under the condition that a straight pipe was installed upstream of the compressor, and unsteady measurements with high response pressure sensors and an I-type hot wire probe have been carried out to each experiments. In addition, Fast Fourier transform (FFT) and Wavelet transform have been applied to the unsteady measurement results obtained from each experiment.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4503
Author(s):  
Kun Park ◽  
In Jung ◽  
Sung You ◽  
Seung Lee ◽  
Ali Zamiri ◽  
...  

In this study, the influences of the flow cut and axial lift of the impeller on the aerodynamic performance of a transonic centrifugal compressor were analyzed. The flow cut is a method to reduce the flow rate by decreasing the impeller passage height. The axial lift is a method of increasing the impeller passage height in the axial direction, which increases the impeller exit width (B2) and increases the total pressure. A NASA CC3 transonic centrifugal compressor with a backswept angle was used as a base compressor. After applying the flow cut, the total pressure at the target flow rate was lower than the total pressure at the design point due to the increase in the relative velocity at the impeller exit. After applying the axial lift, the total pressure at the design flow rate was increased, which was caused by the reduction in the relative velocity as the passage area at the impeller exit was increased. By applying the flow cut and axial lift methods, it was shown that the variation in relative velocity at the impeller exit has a significant effect on the variation in total pressure. In addition, it was found that the relative velocity at the impeller exit of the target flow rate is maintained similar to the base impeller when the flow cut and the axial lift are combined. Therefore, by combining the flow cut and the axial lift, three transonic centrifugal impellers with flow fractions of 0.7, 0.8, and 0.9 compared to the design flow rate were newly designed.


Sign in / Sign up

Export Citation Format

Share Document