truss structure
Recently Published Documents


TOTAL DOCUMENTS

516
(FIVE YEARS 103)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 21 (4) ◽  
pp. 376-383
Author(s):  
S. G. Glushko ◽  
A. A. Lyapin ◽  
Yu. Yu. Shatilov ◽  
A. V. Cherpakov ◽  
R. K. Haldkar

Introduction. Truss structures are widespread in construction due to a number of advantages, such as economy, versatility, and scalability. Accordingly, their modeling and calculation are urgent tasks in the design of building structures. Automatic solution to these problems causes an increase in design efficiency, calculation accuracy, and lower costs. The objective of the study is to examine the functionality and operation algorithm of the software module developed by the authors that generates the geometry of two-dimensional truss structures for subsequent modeling.Materials and Methods. Following the research of the widespread truss configurations, the classification of chords available in the software under consideration is given. The method of parameterizing a truss structure is provided. This method includes base geometric parameters of the structure such as dimensions, model construction rules, and additional features, as well as a comprehensive algorithm. The software is developed in JavaScript.Results. The software module has been integrated into a web application for calculating two-dimensional rod structures. To illustrate the functionality of the software, the examples of user interface are given as well as an example problem. The example includes configuration and calculation of an inclined truss structure. The results, such as support reactions and internal forces with axial force diagram, are provided.Discussion and Conclusions. Using this software module within the framework of the tool for calculating rod structures allows for the simplified process of modeling and calculating complex truss structures, design time, and resource reduction. The software module provides tools for specifying various types of structures, applying loads and assigning properties of a rod system, which makes it a useful instrument for design engineers.


2021 ◽  
Vol 26 (6) ◽  
pp. 577-584
Author(s):  
Jitendra Rajpurohit

Jellyfish Search Optimizer (JSO) is one of the latest nature inspired optimization algorithms. This paper aims to improve the convergence speed of the algorithm. For the purpose, it identifies two modifications to form a proposed variant. First, it proposes improvement of initial population using Opposition based Learning (OBL). Then it introduces a probability-based replacement of passive swarm motion into moves biased towards the global best. OBL enables the algorithm to start with an improved set of population. Biased moves towards global best improve the exploitation capability of the algorithm. The proposed variant has been tested over 30 benchmark functions and the real world problem of 10-bar truss structure design optimization. The proposed variant has also been compared with other algorithms from the literature for the 10-bar truss structure design. The results show that the proposed variant provides fast convergence for benchmark functions and accuracy better than many algorithms for truss structure design.


2021 ◽  
Author(s):  
Peng Wang ◽  
Xing Song ◽  
Xiaohua Hou ◽  
Zhong Shen

2021 ◽  
Vol 5 (3) ◽  
pp. 313-325
Author(s):  
Yong-il Song ◽  
Il Ju Ri

 When the truss structure is reinforced in operating state the additional force is given to it.We propose the method for determining the reasonable magnitude of additional force to reduce the internal force by minimum condition strain energy of truss


2021 ◽  
Vol 11 (21) ◽  
pp. 10193
Author(s):  
Jaroslav Rojíček ◽  
Zbyněk Paška ◽  
Martin Fusek ◽  
Zdenko Bobovsky ◽  
Alžbeta Sapietová ◽  
...  

The design of a manipulator arm, which is built from a construction kit, is presented in this article. The procedure is based on the results of the discrete optimization of a truss structure and its application to a simple component system (assuming a predefined shape and material of components). A genetic algorithm is used to optimize the truss structure, and the results of the solution are verified on a simple task used in literature (the code was written in the Python language). The construction kit was inspired by Merkur®, and the article proposes several components with different shapes and materials. The construction kit and the optimization of the truss structure were used to design the manipulator arm. The truss topology has been predefined with respect to the construction set. The finite element method (software ANSYS®) was used to analyze the components (shell elements) and truss structures (linear analysis, buckling analysis, etc.). To validate the presented approach, the arm designed by topological optimization was used. The comparison shows that the use of components may be an alternative to topology optimization and additive manufacturing. The next step will be the modification of the presented method in order to minimize the differences between the simplified task used for optimization (truss structure-rod element) and the simulation composed of components (components assembly-shell element).


Author(s):  
Dwi Prasetyo Utomo ◽  
Roesdiman Soegiarso

In structural engineering applications, the limit of building deflection or interstory drift is an important issue. In high-rise buildings that are more than or equal to 60 floors in the current era, systems are used in the structure of the building. The function of the Belt Truss is to reduce the deflection that occurs in the building by converting the building's overturning moment into the axial force of the exterior column. The Belt Truss structure itself can use reinforced concrete structures and steel structures. Because the Belt Truss structure is an innovation in the world of structural engineering, the parameter values for earthquake loads are not listed in the applicable Building Planning Standards. The standard for earthquake-resistant building regulations requires the parameters of Response Modification Factor (R), Overstrength Factor (Ωo), and Deflection Magnification (Cd) for determining earthquake loads. Because the parameters on the Belt Truss structure are not listed in the Standard for Earthquake Resistant Building Regulations, a study of the earthquake load parameters on the Belt Truss structure was carried out. The method used in this research is a literature study using Pushover Load Analysis according to ATC - 40 and FEMA 356. Keywords: Belt Truss, Dual System; ATC – 40; FEMA 356; Response Modification Factor (R); Overstrength Factor (Ωo); and Deflection Magnification (Cd) AbstrakDalam aplikasi rekayasa struktur gedung, batasan defleksi bangunan atau interstory drift adalah masalah penting. Pada bangunan tinggi yang lebih dari atau sama dengan 60 lantai pada era sekarang sudah menggunakan sistem pada struktur bangunan tersebut. Fungsi dari Belt Truss tersebut berguna untuk mengurangi defleksi yang terjadi pada bangunan dengan mengkonvesi momen guling bangunan menjadi gaya aksial kolom eksterior. Struktur Belt Truss sendiri materialnya bisa menggunakan struktur beton bertulang dan struktur baja. Karena struktur Belt Truss merupakan inovasi pada dunia rekayasa struktur, maka nilai parameter beban gempa tidak tercantum pada Standar Peraturan Perencanaan Bangunan yang berlaku. Standart Peraturan Bangunan tahan gempa diperlukan parameter – parameter Faktor Modifikasi Respon (R), Faktor Kuat Lebih (Ωo), dan Perbesaran Defleksi (Cd) untuk penentuan beban gempa. Dikarenakan parameter pada struktur Belt Truss tidak tercantum pada Standar Peraturan Bangunan Tahan Gempa, maka dilakukan penelitian parameter-parameter beban gempa pada struktur Belt Truss tersebut. Metode yang digunakan dalam penelitian ini adalah studi literatur dengan menggunakan analisa Beban Dorong Pushover Analysis sesuai ATC - 40 dan FEMA 356.


2021 ◽  
pp. 505-510
Author(s):  
K. Hiramatsu ◽  
N. Hara ◽  
M. Suzuki

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tianqi Wang ◽  
Xu Zhou ◽  
Hongyu Zhang

Purpose The purpose of this paper is to study the wire and arc additive manufacturing (WAAM) method and path planning algorithm of truss structure parts, to realize the collision-free rapid prototyping of truss structures with complex characteristics. Design/methodology/approach First, a point-by-point stacking strategy is proposed based on the spot-welding mode of cold metal transfer welding technology. A force analysis model of the droplet is established, which can be used to adjust the posture of the welding torch and solve the collapse problem in the WAAM process of the truss structure. The collision detection model is developed to calculate the interference size between the truss structure and the welding torch, which is used to control the offset of the welding torch. Finally, the ant colony algorithm has been used to optimize the moving path of welding torch between truss with considering the algorithm efficiency and collision avoiding and the efficiency of the algorithm is improved by discretizing the three-dimensional workspace. Findings A series of experiments were conducted to prove the validity of the proposed methods. The results show that the wire feeding speed, welding speed are the important parameters for controlling the WAAM process of truss parts. The inclination angle of the welding torch has an important influence on the forming quality of the truss. Originality/value The force analysis model of truss structure in the WAAM process is established to ensure the forming quality and a collision-free path planning algorithm is proposed to improve forming efficiency.


Sign in / Sign up

Export Citation Format

Share Document