sugar concentration
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 106)

H-INDEX

36
(FIVE YEARS 5)

2022 ◽  
Vol 71 (2) ◽  
pp. 2869-2882
Author(s):  
N. S. Ishak ◽  
F. C. Seman ◽  
N. Zainal ◽  
N. A. Awang

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Ayele Alemu ◽  
Minale Getachew ◽  
Gulam Mohammed Sayeed Ahmed ◽  
Vineet Tirth ◽  
Ali Algahtani

This study was conducted at the ethanol plant of Metehara sugar factory, at a laboratory scale, to assess the effect of recycling vinasse into the fermentation process on effluent reduction. Vinasse is an effluent produced from distilleries. The experimental design included vinasse concentrations at 4 dilution rates (0 (control), 20, 35, 50, and 65% of process water) with 2 replicates and 6 responses, as follows: ethanol yield, fermentation efficiency, residual sugar concentration, cell count, cell viability, and calcium oxide content. In this study, the actual operational parameters of the ethanol plant were maintained during the experiment. The result of the experiment indicates that, with up to 20% vinasse recycling, there was no influential impact on the ethanol yield, the fermentation efficiency, the residual sugar concentration, or the calcium oxide content, attributable to the recycling, as compared to the control. Above 20% vinasse recycling, ethanol yield and fermentation efficiency decreased sharply from those of the control. In addition, with 20% vinasse recycling put into practice, the amount of vinasse generated will be reduced by about 19.5% and about 114.2 tons of water will be saved per day. Moreover, the excess amount of vinasse produced by the distillery, which is beyond the handling capacity of bio-compost plant of the distillery, will reduce from 105 to 36.8 tons per day. Therefore, it is possible to recycle vinasse into the fermenter up to 20% on dilution water of Metehara distillery, without causing any impacts on the distillery’s performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonathan O. Hernandez ◽  
Ji Young An ◽  
Marilyn S. Combalicer ◽  
Jong-Pil Chun ◽  
Sang-Keun Oh ◽  
...  

A better understanding of plant drought responses is essential to improve plant water use efficiency, productivity, and resilience to ever-changing climatic conditions. Here, we investigated the growth, morpho-anatomical, physiological, and biochemical responses of Quercus acutissima Carruth., Quercus serrata Murray, and Betula schmidtii Regel to progressive water-stress. Seedlings were subjected to well-watered (WW) and water-stressed (WS) conditions while regularly monitoring the soil volumetric water content, stem diameter (SD), height, biomass, stomatal conductance (gs), intercellular CO2 concentration (Ci), and leaf relative water content (RWC). We also investigated the variation in stomatal pore (SP) area, specific leaf area (SLA), root xylem vessel diameter (VD), and total soluble sugar (TSS) concentration between treatments. After 2 months, WS significantly suppressed SD growth of Q. acutissima and B. schmidtii but had no impact on Q. serrata. Total biomass significantly declined at WS-treated seedlings in all species. WS resulted in a smaller SLA than WW in all species. The SP of WS-treated seedlings of Q. acutissima and B. schmidtii significantly decreased, whereas it increased significantly with time in Q. serrata. Larger vessels (i.e., >100 to ≤ 130) were more frequent at WS for Q. acutissima and B. schmidtii, whereas smaller vessels (i.e., >40 to ≤ 90) were more frequent at WS than at WW for Q. serrata after 8 weeks. Tylosis was more frequent at WS than WW for Q. serrata and B. schmidtii at eighth week. WS seedlings showed lower gs, Ci, and RWC compared with WW-treated ones in Q. acutissima and B. schmidtii. TSS concentration was also higher at WS-treated seedlings in two Quercus species. Overall, principal component analysis (PCA) showed that SLA and SP are associated with WS seedlings of Q. serrata and B. schmidtii and the tylosis frequency, TSS, and VD are associated with WS seedlings of Q. acutissima. Therefore, water-stressed plants from all species responded positively to water stress with increasing experimental duration and stress intensity, and that is largely explained by morpho-anatomical traits and soluble sugar concentration. The present study should enhance our understanding of drought-induced tree growth and short-term tree-seedling responses to drought.


Author(s):  
Shamsu Ado Zakari ◽  
Syed Hassan Raza Zaidi ◽  
Mustapha Sunusi ◽  
Kabiru Dawaki Dauda

Abstract Background Leaf senescence occurs in an age-dependent manner, but the rate and timing of leaf senescence may be influenced by various biotic and abiotic factors. In the course of stress, the function, composition, and different components of photosynthetic apparatus occur to be synthesized homogeneously or degraded paradoxically due to different senescence-related processes. Nitrogen (N) deficiency is one of the critical environmental factors that induce leaf senescence, and its incidence may curtail leaf photosynthetic function and markedly alter the genetic information of plants that might result in low grain yield. However, the physiological and genetic mechanism underlying N deficiency regulates premature senescence, and flag leaf function, ROS homeostasis, and intercellular sugar concentration in rice during grain filling are not well understood. In this paper, Zhehui7954 an excellent indica restorer line (wildtype) and its corresponding mutant (psf) with the premature senescence of flag leaves were used to study the effect of different N supplies in the alteration of physiological and biochemical components of flag leaf organ and its functions during grain filling. Results The results showed that the psf mutant appeared to be more susceptible to the varying N supply levels than WT. For instance, the psf mutant showed considerably lower Pn, Chl a, Chl b, and Car contents than its WT. N deficiency (LN) decreased leaves photosynthetic activities, N metabolites, but significantly burst O2•−, H2O2, and relative conductivity (R1/R2) concentrations, which was consistent with the expression levels of senescence-associated genes. Sucrose, glucose, and C/N ratio concentrations increased with a decrease in N level, which was closely associated with N and non-structural carbohydrate translocation rates. Increases in POD activity were positively linked with the senescence-related enhancement of ROS generation under LN conditions, whereas, SOD, CAT, and APX activities showed opposite trends. High N (HN) supply significantly inhibits the transcripts of carbohydrate biosynthesis genes, while N assimilation gene transcripts gradually increased along with leaf senescence. The psf mutant had a relatively higher grain yield under HN treatment than LN, while WT had a higher grain yield under MN than HN and LN. Conclusions This work revealed that the C/N ratio and ROS undergo a gradual increase driven by interlinking positive feedback, providing a physiological framework connecting the participation of sugars and N assimilation in the regulation of leaf senescence. These results could be useful for achieving a higher yield of rice production by appropriate N supply and plant senescence regulation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Eoin Byrne ◽  
Johanna Björkmalm ◽  
James P. Bostick ◽  
Krishnan Sreenivas ◽  
Karin Willquist ◽  
...  

Abstract Background The members of the genus Caldicellulosiruptor have the potential for future integration into a biorefinery system due to their capacity to generate hydrogen close to the theoretical limit of 4 mol H2/mol hexose, use a wide range of sugars and can grow on numerous lignocellulose hydrolysates. However, members of this genus are unable to survive in high sugar concentrations, limiting their ability to grow on more concentrated hydrolysates, thus impeding their industrial applicability. In this study five members of this genus, C.owensensis, C. kronotskyensis, C.bescii, C.acetigenus and C.kristjanssonii, were developed to tolerate higher sugar concentrations through an adaptive laboratory evolution (ALE) process. The developed mixed population C.owensensis CO80 was further studied and accompanied by the development of a kinetic model based on Monod kinetics to quantitatively compare it with the parental strain. Results Mixed populations of Caldicellulosiruptor tolerant to higher glucose concentrations were obtained with C.owensensis adapted to grow up to 80 g/L glucose; other strains in particular C. kristjanssonii demonstrated a greater restriction to adaptation. The C.owensensis CO80 mixed population was further studied and demonstrated the ability to grow in glucose concentrations up to 80 g/L glucose, but with reduced volumetric hydrogen productivities ($$Q_{{{\text{H}}_{2} }}$$ Q H 2 ) and incomplete sugar conversion at elevated glucose concentrations. In addition, the carbon yield decreased with elevated concentrations of glucose. The ability of the mixed population C.owensensis CO80 to grow in high glucose concentrations was further described with a kinetic growth model, which revealed that the critical sugar concentration of the cells increased fourfold when cultivated at higher concentrations. When co-cultured with the adapted C.saccharolyticus G5 mixed culture at a hydraulic retention time (HRT) of 20 h, C.owensensis constituted only 0.09–1.58% of the population in suspension. Conclusions The adaptation of members of the Caldicellulosiruptor genus to higher sugar concentrations established that the ability to develop improved strains via ALE is species dependent, with C.owensensis adapted to grow on 80 g/L, whereas C.kristjanssonii could only be adapted to 30 g/L glucose. Although C.owensensis CO80 was adapted to a higher sugar concentration, this mixed population demonstrated reduced $$Q_{{{\text{H}}_{2} }}$$ Q H 2 with elevated glucose concentrations. This would indicate that while ALE permits adaptation to elevated sugar concentrations, this approach does not result in improved fermentation performances at these higher sugar concentrations. Moreover, the observation that planktonic mixed culture of CO80 was outcompeted by an adapted C.saccharolyticus, when co-cultivated in continuous mode, indicates that the robustness of CO80 mixed culture should be improved for industrial application.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 221
Author(s):  
Christiane Terboven ◽  
Christian Abendroth ◽  
Janin Laumer ◽  
Christiane Herrmann ◽  
Roland Schneider ◽  
...  

The aim of this study was to investigate the production of succinic acid from lactose concentrate, a by-product of cheese-making, using Actinobacillus succinogenes and Basfia succiniciproducens. Although the ability of these strains to metabolize different sugars is already known, their application in the conversion of lactose bears high potential for optimization. With regard to B. succiniciproducens, this approach is completely novel. In particular, the effect of the medium’s sugar concentration as well as the ability of its supplementation with yeast extract to prevent a lack of essential nutrient proteins and vitamins was examined. Lactose-based media containing sugar concentrations of between 20 and 65 g L−1 and 5 g L−1 of yeast extract were fermented, with both strains showing comparable performances. The best results in terms of succinic acid yield and acid concentration—0.57 g g−1 initial sugar and 23 g L−1—were achieved at an initial sugar concentration of 43 g L−1. The necessity of yeast extract was demonstrated using the sugar-optimized medium without supplementation. As a result, the yield and concentration of succinic acid dropped to 0.34 g g−1 and 13 g L−1 and the sugar consumption decreased from more than 99 to less than 55%. Therefore, the supplementation amount of 5 g L−1 of yeast extract can be regarded as well-balanced.


2021 ◽  
Vol 883 (1) ◽  
pp. 012086
Author(s):  
V N Lawalata

Abstract Gandaria leather is a kind of fruit leather processed by gandaria fruit in the form of thin sheets with a thickness of 2-3 mm and has a specific consistency and taste according to gandaria fruit. The purpose of this study was to determine the effect of added sugar on the physicochemical characteristics of gandaria leather. This study used a single-factor completely randomized design, with 0%, 5%, 10%, and 15% sugar concentrations. The results showed that the sugar concentration had a very significant effect on the parameters of water content, total sugar, total acid, vitamin C, and water activity (aw), and had a significant effect on the tensile strength of gandaria leather. The physicochemical characteristics of gandaria leather from various sugar concentration treatments are as follows: water content (14.05% -20.13%), total sugar (80.56% - 84.90%), total acid (3.10 - 12.37 mg/100g), vitamin C (59.44 - 78.48 mg/100g), water activity (0.48 - 0.62), and tensile strength (0.20-0.37 N). The resulting gandaria leather qualifies as good fruit leather, and the treatment with a 10% sugar concentration is recommended for gandaria leather which has the potential to be developed and commercialized.


2021 ◽  
Vol 52 ◽  
pp. e1288
Author(s):  
César Canché-Collí ◽  
Felipe Barahona ◽  
Luis A. Medina-Medina ◽  
Azucena Canto

Background: Floral nectar and honey vary in sugar concentration, from low concentration in nectar to high concentration in honey. Variation in sugar concentration is a gradient that determines yeast growth and can lead to its ecological niche specialization. Objective: Evaluate the effect of a sugar concentration gradient on the growth kinetics and cell size of yeasts isolated from the floral nectar and honey of Melipona beecheii. Methods: Four strains identified as Metschnikowia koreensis and Sympodiomycopsis paphiopedili, isolated from floral nectar, and Starmerella apicola and Starmerella apicola 2, isolated from honey of Melipona beecheii were grown in artificial media with a gradient of 2, 10, 20, 40 and 60% glucose. We evaluated culture density (cells / µL), growth parameters, and cell size in each strain. Results and Conclusions: Strains isolated from honey had high growth rates at the highest glucose concentrations, while strains isolated from floral nectar grew best at low concentrations. Cell size decreased as glucose concentration increased in all strains. The data supports the hypothesis that sugar concentration gradient is an ecological filter that modifies the growth and morphology of yeasts associated with flowers and honey and leads to niche specialization in yeasts that colonize plant-bee environments.


Author(s):  
K.M.P. Mokatse ◽  
J.P.H. van Wyk

Environmental pollution and the exploitation of fossil-based products are topical issues that should be a matter of concern to the global population. The production of bio-based substances from waste biomass is a way to reduce the consumption of fossil fuels and limit environmental pollution. Enzymatic catalysed saccharification of cellulose is an important step for the bio-conversion of biomass such as waste paper into glucose that could be utilized as a feedstock for the production of value added bioproducts and this process can also be considered as an alternative route of waste management. During this study, fresh cellulase enzyme from Trichoderma viride was incubated separately with seven different waste paper materials during twelve successive incubation periods of 2 h each. The amount of sugar released from each paper material during each incubation period was determined. The highest sugar concentration released from each paper materials was produced during the first incubation period except the filter paper for which the highest amount of sugar was produced during the 9th period of incubation. During these optimum sugar producing incubation periods the highest total sugar concentration was released from brown envelope paper (3.3 mg.mL-1 followed by foolscap paper (3.0 mg.mL-1) and office paper (2.8 mg.mL-1) while the lowest amount of sugar was released from Pick ’n Pay paper (0.6 mg.mL-1). The relative saccharification percentage was also calculated which showed that filter paper produced the highest amounts of sugar followed by newspaper, and foolscap paper with advertising paper from a retailer. Pick ’n Pay offered the highest resistance towards cellulase catalysed bio-conversion into sugar.


2021 ◽  
Vol 12 ◽  
Author(s):  
Takanori Okamoto ◽  
Rina Shinjo ◽  
Arisa Nishihara ◽  
Kazuma Uesaka ◽  
Aiko Tanaka ◽  
...  

Enhancement of the nitrogen-fixing ability of endophytic bacteria in rice is expected to result in improved nitrogen use under low-nitrogen conditions. Endophytic nitrogen-fixing bacteria require a large amount of energy to fix atmospheric nitrogen. However, it is unknown which carbon source and bacteria would affect nitrogen-fixing activity in rice. Therefore, this study examined genotypic variations in the nitrogen-fixing ability of rice plant stem as affected by non-structural carbohydrates and endophytic bacterial flora in field-grown rice. In the field experiments, six varieties and 10 genotypes of rice were grown in 2017 and 2018 to compare the acetylene reduction activity (nitrogen-fixing activity) and non-structural carbohydrates (glucose, sucrose, and starch) concentration in their stems at the heading stage. For the bacterial flora analysis, two genes were amplified using a primer set of 16S rRNA and nitrogenase (NifH) gene-specific primers. Next, acetylene reduction activity was correlated with sugar concentration among genotypes in both years, suggesting that the levels of soluble sugars influenced stem nitrogen-fixing activity. Bacterial flora analysis also suggested the presence of common and genotype-specific bacterial flora in both 16S rRNA and nifH genes. Similarly, bacteria classified as rhizobia, such as Bradyrhizobium sp. (Alphaproteobacteria) and Paraburkholderia sp. (Betaproteobacteria), were highly abundant in all rice genotypes, suggesting that these bacteria make major contributions to the nitrogen fixation process in rice stems. Gammaproteobacteria were more abundant in CG14 as well, which showed the highest acetylene reduction activity and sugar concentration among genotypes and is also proposed to contribute to the higher amount of nitrogen-fixing activity.


Sign in / Sign up

Export Citation Format

Share Document