compositional line
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 1)

2015 ◽  
Vol 34 (1) ◽  
pp. 125
Author(s):  
Tonci Balic-Zunic ◽  
Yves Moëlo ◽  
Ljiljana Karanović ◽  
Peter Berlepsch

Syntheses along the Tl<sub>5</sub>(As,Sb)<sub>13</sub>S<sub>22</sub> compositional line in the Tl<sub>2</sub>S-As<sub>2</sub>S<sub>3</sub>-Sb<sub>2</sub>S<sub>3</sub> phase system showed that the compositional range of rebulite extends from  Tl<sub>5</sub>As<sub>9.5</sub>Sb<sub>3.5</sub>S<sub>22</sub> to Tl<sub>5</sub>As<sub>7.75</sub>Sb<sub>5.25</sub>S<sub>22</sub>. The Sb-rich end-member is in equilibrium with jankovićite of ideal composition Tl<sub>5</sub>Sb<sub>7.5</sub>As<sub>5.5</sub>S<sub>22</sub>. It is considered to be the As-rich end-member of the jankovićite solid solution. The crystal structure analyses of crystals from the As and Sb end-members of rebulite show that the Sb/As substitution is present in Sb3, Sb4, Sb5, As1 and As2 structural sites. Of them, Sb3 is always Sb dominated whereas other four vary from As- to Sb-dominated over the range of the solid solution. The change of the structural topology from jankovićite to rebulite, the closely related but not identical structures, is explained through necessity to accommodate the smaller volumes of the As coordination polyhedra and is accomplished through unit-cell twinning over the periodic (001)<sub>reb</sub> twin boundaries. The As end-member of the rebulite solid solution is in equilibrium with the phase of Tl<sub>2.4</sub>Sb<sub>0.68</sub>As<sub>7.18</sub>S<sub>13</sub> ideal composition, interpreted as imhofite.


2005 ◽  
Vol 20 (11) ◽  
pp. 3028-3033 ◽  
Author(s):  
Y.W. Heo ◽  
L-C. Tien ◽  
D.P. Norton

We report on the growth of Mg-rich cubic (Mg,Zn)O nanowires using a catalysis-driven molecular-beam-epitaxy method. Nanowires were grown on both Si and Al2O3 substrates coated with a nominally 2-nm-thick layer of Ag. The (Mg,Zn)O nanowires were grown with a Zn and Mg cation flux, with an O2/O3 mixture serving as the oxidizing species. The growth temperature was 400 °C. Under these conditions, nanowires were observed to grow on the Ag sites. The nanowire diameter was on the order of 90 nm. (Mg,Zn)O nanowires as long as 2 μm were realized. High-resolution transmission electron microscope imagery shows the nanowires had single-phase cubic rock salt structure (Mg,Zn)O with a growth direction along the [100]. The presence and compositional distribution of Mg and Zn in the single nanowire were confirmed using a compositional line-scan, profiled across the nanowire, by energy dispersive spectrometry with scanning transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document