impingement cooling
Recently Published Documents


TOTAL DOCUMENTS

600
(FIVE YEARS 158)

H-INDEX

35
(FIVE YEARS 7)

Author(s):  
Zhihan Zhang ◽  
Qianhui Li ◽  
Christoph Bruecker ◽  
Qiang Zhang

Author(s):  
A. V. S. Oliveira ◽  
D. Maréchal ◽  
J.-L. Borean ◽  
V. Schick ◽  
J. Teixeira ◽  
...  

Author(s):  
F. Todd Davidson ◽  
David Helmer ◽  
Collin Parker ◽  
Lee Cox ◽  
Kalen Kahn ◽  
...  

2022 ◽  
Vol 26 (1) ◽  
pp. 1-14
Author(s):  
Dalmn Y. Taha ◽  
◽  
Dhamyaa S. Khudhur ◽  
Layla M. Nassir ◽  
◽  
...  

In this paper, a statistical analysis was applied to the numerical predictions of temperature distribution for the heat sinks. There are two types of heat sink with an array of impingement. The first type is a flat plate heat sink, and the second type is arcs-fins heat sinks. The second type category considers five models (A, B, C, D, and E). The shapes of fins were changed, but the thickness, distance between fins, and radius were held fixed for comparing and analyzing them depending upon the improvement of the fin geometry of heat sink. The heat sinks of the two types are subjected to multi impinging flow at different Reynolds numbers (7000-11000). Thermodynamic and hydraulic results were collected. The best model was calculated through a statistical analysis. The efficiency of an arcs-fin heat sink was superior to that of the flat plate heat sink. The findings of Model D were more appropriate than those of the other models. The concave arc near the heat sink's exit (model D) created better effect than the convex arc (model E), despite the fact that the (model D) shape fins being identical to (model E) shape fins (only rotated 180° at the same location). However, Descriptive Statistics manifested that in all situations, the mean temperature for (model D) is better than (model E). The results of comparison between the flat plate heat sink and models (D and E) evinced that the average heat sink temperature in the suggested design reduced via 12%, 8%, while the (model E) decreased by 12%, 7% for Re (7000, 9000), respectively. In addition, the two models maintained the same percentage of (8% and 7%) improvement at Re (11000). The correlation coefficient between the flat plate and the arcs-fins heat sink for model B has the highest value (0.809), while model A has the lowest value of correlation (0.673).


Author(s):  
Tiwei Wei ◽  
Herman Oprins ◽  
Liang Fang ◽  
Vladimir Cherman ◽  
Eric Beyne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document