electromagnetic linear actuator
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

Actuators ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Xinyu Fan ◽  
Jie Yin ◽  
Qinfen Lu

Electromagnetic linear actuators, as key executive components, have a vital impact on the performance of fully flexible variable valve trains. Considering that the conventional moving coil electromagnetic linear actuator (MCELA) has the disadvantages of low force density and a lack of end-passive self-holding ability, a novel composited electromagnetic linear actuator (CELA) is proposed by combining the performance advantages of MCELA and moving iron electromagnetic linear actuator (MIELA) in this work. Firstly, the structure and magnetic circuit design scheme of the proposed actuator are introduced and the finite element simulation model is established. The magnetic field distribution and force characteristics of the actuators are assessed by finite element simulation. Secondly, the construction of the prototype of the actuator is outlined, based on which the feasibility of the design scheme and the steady-state performance of the actuator are verified. Finally, the coordinated control strategy is proposed to realize the multi motion coordination control of the actuator. The research results show that the maximum starting force of the CELA with the end-passive self-holding ability is 574.92 N while the holding force can approach 229.25 N. Moreover, the CELA is proven to have excellent dynamic characteristics and control precision under different motion modes and to have an improved adaptability to the complex working conditions of internal combustion engines.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 138
Author(s):  
Yingtao Lu ◽  
Cao Tan ◽  
Wenqing Ge ◽  
Bo Li ◽  
Jiayu Lu

The electromagnetic linear actuator is used as the core drive unit to achieve high precision and high response in the direct-drive actuation system. In order to improve the response performance and control accuracy of the linear drive unit, an improved sliding mode-active disturbance rejection control (ISM-ADRC) method was proposed. A motor model was established based on improved LuGre dynamic friction. The position loop adopts the improved integral traditional sliding mode control based on an extended state observer, and the current loop adopts PI control. The stability of the system is verified based on the Lyapunov theory. A nonlinear dilated state observer is used to effectively observe the electromagnetic linear actuator position and velocity information while estimating and compensating the internal and external uncertainty perturbations. At the same time, the saturation function sat(s) is used to replace the sign(s) and introduce the power function of the displacement error variable. The improved integral sliding mode control law further improves the response speed and control accuracy of the controller while reducing the jitter inherent in the conventional sliding mode. Simulation and experimental data show that the proposed improved sliding mode-active disturbance rejection control reduces the 8-mm step response time of the electromagnetic linear actuator by 21.9% and the steady-state error by less than 0.01 mm compared with the conventional sliding-mode control, while the system has 49.4% less adjustment time for abrupt load changes and is more robust to different loads and noise.


Author(s):  
Geng Wang ◽  
Renjing Gao ◽  
Qi Wang ◽  
Shutian Liu

Electromagnetic linear actuators (ELAs) may be confronted with unsatisfactory performance when subjected to overheating. Therefore, it is significant to clarify its thermal characteristics and design the thermal performance requirements. A thermal analysis method based on multiphysics coupling model was presented, which uses the non-simplified loss distribution as the heat source to calculate the temperature field, adjusts the material properties by temperature, and considers the interaction between motion (including impact) and loss. More importantly, an improved universal equivalent winding to satisfy the condition of real compact concentrated winding was developed. Finally, the validity of this approach was verified through the experiment, and the regularity of temperature was summarized. The results show that the error of simulation and experiment is less than 6% and the permissible continuous operation frequency is no more than 30 Hz. The approach proposed in this paper can be employed not only to the ELA, but also to the design and analysis a wide range of electromagnetic machines.


2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Noah Kohls ◽  
Ibrahim Abdeally ◽  
Bryan P. Ruddy ◽  
Yi Chen Mazumdar

Abstract Electromagnetic actuators provide fast speed, large forces, high strokes, and wide bandwidths. Most designs, however, are constructed from rigid components, making these benefits inaccessible for many soft robotics applications. In this work, we develop a new soft electromagnetic linear actuator using liquid gallium–indium for the conductor and neodymium–iron–boron and polymer composites for the permanent magnet. When combined in a solenoid configuration, high strokes can be generated using entirely soft components. To emulate the pulsing motion of Xenia coral arms, we develop an additional soft flexure system that converts the linear translation to rotary motion. The design and fabrication of the electromagnetic actuator and compliant flexure are first described. Models for the magnetic forces and the joint kinematics are then developed and compared with the experimental results. Finally, the robot dynamics are analyzed using stochastic system identification techniques. Results show that the compliant actuator is able to achieve an 18 mm stroke, allowing the soft arms to bend up to 120 deg. This further enables the tips of the arms to traverse an arc length of 42 mm. Bandwidths up to 30 Hz were also observed. While this article focuses on emulating a biological system, this highly deformable actuator design can also be utilized for fully soft grasping or wearables applications.


2021 ◽  
Vol 118 (6) ◽  
pp. 1741-1754
Author(s):  
Jiayu Lu ◽  
Qijing Qin ◽  
Cao Tan ◽  
Bo Li ◽  
Xinyu Fan

2020 ◽  
Vol 31 (1) ◽  
pp. 015001
Author(s):  
Chao Zhi ◽  
Bin Tang ◽  
Yue Wang ◽  
Mingshan Qu ◽  
Yanjun Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document