chip seal
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 39)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 304 ◽  
pp. 124518
Author(s):  
Shi Chang ◽  
Linling Zhang ◽  
Sili Li ◽  
Nasir Gharaibeh ◽  
Amy Epps Martin ◽  
...  

Author(s):  
Alireza Pourhassan ◽  
Ahmed A. Gheni ◽  
Mohamed A. ElGawady

Water film depth (WFD) is an important factor for road traffic safety because of its direct connection with skid resistance, hydroplaning speed, and the tendency of splash and spray. Increasing the pavement macrotexture reduces WFD. However, existing models for WFD prediction have not been developed on highly textured surfaces such as chip seal. Furthermore, the rainfall intensities used for developing most of these models were relatively low, leaving no or low WFD on chip seal surfaces. To propose a WFD prediction model suitable for highly textured surfaces and to consider the effect of surface material type, an experimental study was conducted with 154 different combinations of mean texture depth (MTD), surface material type, surface slope, drainage length, and rainfall intensity. The tests were carried out on chip seal specimens using a full-scale rainfall simulator. Test results from 1,784 WFD readings indicated that the Gallaway and PAVDRN models were not accurate for highly textured surfaces used in this study with MTD ranging from 0.05 to 0.20 in. Two experimental models were, therefore, proposed to predict the WFD; both models displayed a significantly higher correlation between the measured and predicted WFD compared with the existing models. Furthermore, the eco-friendly rubberized chip seal showed an enhanced drainage capability compared with conventional chip seal, especially in low slopes, because of the hydrophobic nature of crumb rubber versus the hydrophilic character of mineral aggregates. Accordingly, the proposed model incorporated a term to consider the effect of surface material type.


Author(s):  
Md Nafiur Rahman ◽  
Md Tanvir Ahmed Sarkar ◽  
Mostafa A. Elseifi ◽  
Corey Mayeux ◽  
Samuel B. Cooper ◽  
...  

Chip sealing is a commonly used pavement maintenance technique that aims to delay pavement deterioration by reducing water infiltration and restoring skid resistance. The objective of this study was to evaluate the short-term field performance and cost-effectiveness of chip seals prepared with different types of asphalt emulsion and application rates. A newly introduced crumb-rubber modified asphalt emulsion was evaluated, one that allows chip seal installation at the same temperature as a standard emulsion. Types of emulsion included a crumb-rubber modified asphalt emulsion (CRS-2TR), a polymer-modified emulsion (CRS-2P), and a conventional unmodified emulsion (CRS-2). Application rates were obtained from the Louisiana Department of Transportation and Development (DOTD), the Texas Department of Transportation (DOT) specifications, and from the chip seal design method recommended in NCHRP Report 680. Seven chip seal sections were constructed and monitored regularly over a 12-month period. In the northbound lane, the chip seal section constructed with CRS-2TR (0.37 gal per square yard [gsy]) was the best performer statistically. In the southbound lane, the chip seal sections constructed with CRS-2TR and CRS-2P (0.31 gsy) performed similarly. Furthermore, the maximum Service Life Extension (SLE) was observed for the CRS-2TR (0.31 gsy) chip seal sections, whereas the chip seal sections constructed with CRS-2 had the lowest SLE. In addition, the most cost-effective chip seal section was achieved by the application of CRS-2TR emulsion at the Louisiana DOTD recommended emulsion application rate.


2021 ◽  
Vol 11 (6) ◽  
pp. 2514
Author(s):  
Gerrit J. Jordaan ◽  
Wynand J. vd M. Steyn ◽  
Andre Broekman

Emulsion stabilisation of base layers surfaced with chip seals often proves problematic, with chips punching into the base and early distress. This can be aggravated by the use of modified binders that restricts the evaporation of moisture from pavement layers. The introduction of new-age (nano)-modified emulsion (NME) stabilisation has the advantage that water is chemically repelled from the stabilised layer, resulting in an accelerated development of strength. A need was identified to evaluate the early-life performance of selected chip and Cape seals, together with identified modified binders on anionic NME-stabilised base layers constructed with materials traditionally classified as unsuitable, using archaic empirically derived tests. Three different chip seal surfacings with unconventional modified binders were constructed and evaluated using accelerated pavement testing (APT) with the Model Mobile Load Simulator—3rd model (MMLS3). The objectives of the experimental design and testing were to evaluate the binder performance, chip seal performance in terms of early loss of chips before chip orientation, punching of the chips into the anionic NME-stabilised base and deformation characteristics of a Cape seal that was hand-laid using an anionic NME slurry without any cement filler. It was shown that that chip seal surfacings can be used at low risk, on a base layer containing materials with fines exceeding 22%. The selection of specific modified binders can reduce risks associated with chip seal surfacings, which can impact construction limitations. The recommended use of elastomer-modified binders on newly constructed or rehabilitated layers, resulting in moisture entrapment, needs to be reconsidered.


Author(s):  
Farhang Jalali ◽  
Adriana Vargas-Nordcbeck

Chip seals are effective pavement preservation treatments that are usually applied to address non-fatigue cracking, weathering, and raveling, to seal the surface, to delay oxidation, and, finally, to improve skid resistance. This study used field performance data of test sections from the Pavement Preservation Group Study being conducted by the National Center for Asphalt Technology and the Minnesota DOT’s Road Research Facility. Data from test sections located in a low-traffic-volume road with a hot, wet, no-freeze climate collected over a period of 7 years were used to evaluate the effect of several chip seal treatments. Treatments range from single layer to multilayer systems, and include different construction techniques such as rejuvenating scrub seal and fiber membrane. Also, a section was crack sealed before the application of a single layer chip seal to assess the benefits. A semi-parametric survival analysis was performed to determine the differences in median time to failure (MTTF) for different chip seal sections versus a controlled section—representing a “do-nothing” scenario. The results showed that the MTTF for a single layer chip seal ranges from 6.8 to 9.1 years depending on the pretreatment condition. Crack sealing before chip seal could extend the MTTF by an additional 1–3 years, depending on initial conditions. Double and triple layer chip seals extend the MTTF beyond 10 years. Finally, the scrub seal provided the highest benefits, with survival rates close to 100% after 10 years of performance.


Author(s):  
Thomas Bennert ◽  
Robert Blight ◽  
Vahid Ganji ◽  
Drew Tulanowski ◽  
Susan Gresavage

The use of high friction surface treatments (HFST) has become increasingly popular to help improve roadway friction properties and reduce the number of lane-departure and breaking-related accidents. Conventional HFST installation consists of applying an epoxy-resin material to an existing roadway surface and “gluing” a hard, highly angular fine aggregate to the roadway surface. When constructed correctly, skid resistance values (SN40) are often measured in the upper 60s and 70s. However, this functional overlay does not come without potential issues. Performance and service life is strongly dependent on the quality of the construction process, as well the quality of the substrate, which is often difficult to assess in situ. The paper summarizes the forensic testing of three HFST installations in New Jersey—one performing well and two showing premature failure. Testing procedures and preliminary criteria for existing asphalt pavement surfaces were developed to address whether or not epoxy-resin HFST is a viable option. Additionally, the paper summarizes the development and forensic testing of a potential alternative to the epoxy-resin based HFST application. This alternative surface, called a high friction chip seal (HFCS), incorporates the same hard, highly angular fine aggregate but using asphalt binder as the “gluing” medium within the chip seal application process. Three different aggregate sources were evaluated using the HFCS application on Rt 68 in New Jersey. Laboratory testing of the aggregates, as well as field measurements of the test sections, were conducted. It was found that HFCS could be a potential alternative for areas where premature HFST failure is a concern.


Author(s):  
Gerrit J Jordaan ◽  
Wynand J VdM Steyn ◽  
Andre Broekman

Emulsion stabilisation of base layers surfaced with chip seals often proves problematic with chips punching into the base and early distress. This can be aggravated by the use of modified binders that restricts the evaporation of moisture from pavement layers. The introduction of New-age (Nano) Modified Emulsion (NME) stabilisation has the advantage that water is chemically repelled from the stabilised layer resulting in an accelerated development of strength. A need was identified to evaluate the early life performance of selected chip seals, together with identified binders. Three different chip seal surfacings with unconventional modified binders were constructed and evaluated using Accelerated Pavement Testing (APT) with the MMLS3. The objectives of the experimental design and testing were to evaluate binder performance, early loss of chips before chip orientation at low temperatures, punching of the chips into the NME stabilised base, deformation characteristics of a Cape seal and the effect of the use of a standard normal modified binder. This paper contains details of the NME base layer, the binder and seal selection and the test results. It is shown that a cost-effective thin chip seal in combination with a suitable binder can be used on a NME stabilised base with confidence.


2021 ◽  
Author(s):  
Fulu Wei ◽  
Ce Wang ◽  
Xiangxi Tian ◽  
Shuo Li ◽  
Jie Shan

The Indiana Department of Transportation (INDOT) completed a total of 25 high friction surface treatment (HFST) projects across the state in 2018. This research study attempted to investigate the durability and performance of HFST in terms of its HFST-pavement system integrity and surface friction performance. Laboratory tests were conducted to determine the physical and mechanical properties of epoxy-bauxite mortar. Field inspections were carried out to identify site conditions and common early HFST distresses. Cyclic loading test and finite element method (FEM) analysis were performed to evaluate the bonding strength between HFST and existing pavement, in particular chip seal with different pretreatments such as vacuum sweeping, shotblasting, and scarification milling. Both surface friction and texture tests were undertaken periodically (generally once every 6 months) to evaluate the surface friction performance of HFST. Crash records over a 5-year period, i.e., 3 years before installation and 2 years after installation, were examined to determine the safety performance of HFST, crash modification factor (CMF) in particular. It was found that HFST epoxy-bauxite mortar has a coefficient of thermal expansion (CTE) significantly higher than those of hot mix asphalt (HMA) mixtures and Portland cement concrete (PCC), and good cracking resistance. The most common early HFST distresses in Indiana are reflective cracking, surface wrinkling, aggregate loss, and delamination. Vacuum sweeping is the optimal method for pretreating existing pavements, chip seal in particular. Chip seal in good condition is structurally capable of providing a sound base for HFST. On two-lane highway curves, HFST is capable of reducing the total vehicle crash by 30%, injury crash by 50%, and wet weather crash by 44%, and providing a CMF of 0.584 in Indiana. Great variability may arise in the results of friction tests on horizontal curves by the use of locked wheel skid tester (LWST) due both to the nature of vehicle dynamics and to the operation of test vehicle. Texture testing, however, is capable of providing continuous texture measurements that can be used to calculate a texture height parameter, i.e., mean profile depth (MPD), not only for evaluating friction performance but also implementing quality control (QC) and quality assurance (QA) plans for HFST.


Sign in / Sign up

Export Citation Format

Share Document