cajal body
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 37)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Cecilia Ranhem ◽  
Gabriella Larsson ◽  
David Lindqvist ◽  
Bengt Sorbe ◽  
Mats Karlsson ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Erica L. Kleinbrink ◽  
Nardhy Gomez-Lopez ◽  
Donghong Ju ◽  
Bogdan Done ◽  
Anton-Scott Goustin ◽  
...  

In the post-genomic era, our understanding of the molecular regulators of physiologic and pathologic processes in pregnancy is expanding at the whole-genome level. Longitudinal changes in the known protein-coding transcriptome during normal pregnancy, which we recently reported (Gomez-Lopez et al., 2019), have improved our definition of the major operant networks, yet pregnancy-related functions of the non-coding RNA transcriptome remain poorly understood. A key finding of the ENCODE (Encyclopedia of DNA Elements) Consortium, the successor of the Human Genome Project, was that the human genome contains approximately 60,000 genes, the majority of which do not encode proteins. The total transcriptional output of non-protein-coding RNA genes, collectively referred to as the non-coding transcriptome, is comprised mainly of long non-coding RNA (lncRNA) transcripts (Derrien et al., 2012). Although the ncRNA transcriptome eclipses its protein-coding counterpart in abundance, it has until recently lacked a comprehensive, unbiased, genome-scale characterization over the timecourse of normal human pregnancy. Here, we annotated, characterized, and selectively validated the longitudinal changes in the non-coding transcriptome of maternal whole blood during normal pregnancy to term. We identified nine long non-coding RNAs (lncRNAs), including long intergenic non-coding RNAs (lincRNAs) as well as lncRNAs antisense to or otherwise in the immediate vicinity of protein-coding genes, that were differentially expressed with advancing gestation in normal pregnancy: AL355711, BC039551 (expressed mainly in the placenta), JHDM1D-AS1, A2M-AS1, MANEA-AS1, NR_034004, LINC00649, LINC00861, and LINC01094. By cross-referencing our dataset against major public pseudogene catalogs, we also identified six transcribed pseudogenes that were differentially expressed over time during normal pregnancy in maternal blood: UBBP4, FOXO3B, two Makorin (MKRN) pseudogenes (MKRN9P and LOC441455), PSME2P2, and YBX3P1. We also identified three non-coding RNAs belonging to other classes that were modulated during gestation: the microRNA MIR4439, the small nucleolar RNA (snoRNA) SNORD41, and the small Cajal-body specific ncRNA SCARNA2. The expression profiles of most hits were broadly suggestive of functions in pregnancy. These time-dependent changes of the non-coding transcriptome during normal pregnancy, which may confer specific regulatory impacts on their protein-coding gene targets, will facilitate a deeper molecular understanding of pregnancy and lncRNA-mediated molecular pathways at the maternal-fetal interface and of how these pathways impact maternal and fetal health.


RNA ◽  
2021 ◽  
pp. rna.078997.121
Author(s):  
Phillip A. Sharp ◽  
Arup K. Chakraborty ◽  
Jonathan E. Henninger ◽  
Richard A. Young

Macrosopic membraneless organelles containing RNA such as the nucleoli, germ granules and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can form by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with transcription of genes. This brief article summarizes thoughts about the importance of condensates in regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a non-equilibrium feedback loop where additional RNA destabilizes the condensate.


RNA ◽  
2021 ◽  
pp. rna.078953.121
Author(s):  
Alexandre Garus ◽  
Chantal Autexier

Dyskerin and its homologues are ancient and conserved enzymes that catalyse the most common posttranscriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently – it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlight the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal Body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential and cancer.


RNA ◽  
2021 ◽  
pp. rna.078916.121
Author(s):  
Svetlana Deryusheva ◽  
Gaelle JS Talross ◽  
Joseph G. Gall

In eukaryotes, rRNAs and spliceosomal snRNAs are heavily modified posttranscriptionally. Pseudouridylation and 2’-O-methylation are the most abundant types of RNA modifications. They are mediated by modification guide RNAs, also known as small nucleolar (sno)RNAs and small Cajal body-specific (sca)RNAs. We used yeast and vertebrate cells to test guide activities predicted for a number of snoRNAs, based on their regions of complementarity with rRNAs. We showed that human SNORA24 is a genuine guide RNA for 18S-ψ609, despite some non-canonical base-pairing with its target. At the same time, we found quite a few snoRNAs that have the ability to base-pair with rRNAs and can induce predicted modifications in artificial substrate RNAs, but do not modify the same target sequence within endogenous rRNA molecules. Furthermore, certain fragments of rRNAs can be modified by the endogenous yeast modification machinery when inserted into an artificial backbone RNA, even though the same sequences are not modified in endogenous yeast rRNAs. In Xenopus cells a guide RNA generated from scaRNA, but not from snoRNA, could induce an additional pseudouridylation of U2 snRNA at position 60; both guide RNAs were equally active on a U2 snRNA-specific substrate in yeast cells. Thus, posttranscriptional modification of functionally important RNAs, such as rRNAs and snRNAs, is highly regulated and more complex than simply strong base-pairing between a guide RNA and substrate RNA. We discuss possible regulatory roles for these unexpected modifications.


2021 ◽  
Author(s):  
Huan Niu ◽  
Meng Zhao ◽  
Jing Huang ◽  
Jing Wang ◽  
Yang Si ◽  
...  

Abstract Background: Resistance to 5-fluorouracil (5-FU) in chemotherapy and recurrence of colorectal tumors is a serious problem to be resolved for the improvement of clinical outcomes.Methods: In the present study, the effects of conditioned medium (CM) derived from 5-FU-resistant HCT-8/FU on cell functions were evaluated. The methods of immunofluorescence and RNA-seq analyses were used to investigate the molecular mechanism underlining the roles of CM from resistant cells.Results: we found that CM derived from 5-FU-resistant HCT-8/FU was able to reduce 5-FU chemosensitivity of HCT-8 colon cancer cells, with correlating changes in the number and morphology of the Cajal bodies (CBs) as observable nuclear structures. We identified UHMK1 was able to change the disassembly and reassembly of CBs regulated by the phosphorylation of coilin, a major component of CBs, and subsequently resulted in a large number of variations of RNA alternative splicing, affecting the cell survival following 5-FU treatment through changes in intracellular phenotype and transmitted preadaptive signals to adjacent cells in tumor microenvironment (TME).Conclusion: Our finding provided evidence to demonstrate CBs of their disassembling/reassembling dynamics to indicate drug sensitivity or resistance in tumor cells in response to stress signal. The results also suggested that UHMK1 could be an important factor to maintain CB structure and morphology with its possible roles in the regulation of splicing events, especially when cells exposed to cytotoxic drugs.


2021 ◽  
pp. mbc.E21-05-0225
Author(s):  
Katheryn E. Lett ◽  
Madelyn K. Logan ◽  
Douglas M. McLaurin ◽  
Michael D. Hebert

MicroRNAs (miRNAs) are ∼22 nt small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The biogenesis of miRNAs involves a series of processing steps beginning with cropping of the primary miRNA transcript by the Microprocessor complex, which is comprised of Drosha and DGCR8. Here we report a novel regulatory interaction between the Microprocessor components and coilin, the Cajal Body (CB) marker protein. Coilin knockdown causes alterations in the level of primary and mature miRNAs, let-7a and miR-34a, and their miRNA targets, HMGA2 and Notch1, respectively. We also found that coilin knockdown affects the levels of DGCR8 and Drosha in cells with (HeLa) and without (WI-38) CBs. To further explore the role of coilin in miRNA biogenesis, we conducted a series of co-immunoprecipitation experiments using coilin and DGCR8 constructs, which revealed that coilin and DGCR8 can form a complex. Additionally, our results indicate that phosphorylation of DGCR8, which has been shown to increase protein stability, is impacted by coilin knockdown. Collectively, our results implicate coilin as a member of the regulatory network governing miRNA biogenesis.


2021 ◽  
Author(s):  
Svetlana Deryusheva ◽  
Gaelle JS Talross ◽  
Joseph G. Gall

In eukaryotes, rRNAs and spliceosomal snRNAs are heavily modified posttranscriptionally. Pseudouridylation and 2′-O-methylation are the most abundant types of RNA modifications. They are mediated by modification guide RNAs, also known as small nucleolar (sno)RNAs and small Cajal body-specific (sca)RNAs. We used yeast and vertebrate cells to test guide activities predicted for a number of snoRNAs, based on their regions of complementarity with rRNAs. We showed that human SNORA24 is a genuine guide RNA for 18S-ψ609, despite some non-canonical base-pairing with its target. At the same time, we found quite a few snoRNAs that have the ability to base-pair with rRNAs and can induce predicted modifications in artificial substrate RNAs, but do not modify the same target sequence within endogenous rRNA molecules. Furthermore, certain fragments of rRNAs can be modified by the endogenous yeast modification machinery when inserted into an artificial backbone RNA, even though the same sequences are not modified in endogenous yeast rRNAs. In Xenopus cells a guide RNA generated from scaRNA, but not from snoRNA, could induce an additional pseudouridylation of U2 snRNA at position 60; both guide RNAs were equally active on a U2 snRNA-specific substrate in yeast cells. Thus, posttranscriptional modification of functionally important RNAs, such as rRNAs and snRNAs, is highly regulated and more complex than simply strong base-pairing between a guide RNA and substrate RNA. We discuss possible regulatory roles for these unexpected modifications.


NAR Cancer ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Giulia Beneventi ◽  
Roberto Munita ◽  
Phuong Cao Thi Ngoc ◽  
Magdalena Madej ◽  
Maciej Cieśla ◽  
...  

Abstract Small Cajal body-specific RNAs (scaRNAs) guide post-transcriptional modification of spliceosomal RNA and, while commonly altered in cancer, have poorly defined roles in tumorigenesis. Here, we uncover that SCARNA15 directs alternative splicing (AS) and stress adaptation in cancer cells. Specifically, we find that SCARNA15 guides critical pseudouridylation (Ψ) of U2 spliceosomal RNA to fine-tune AS of distinct transcripts enriched for chromatin and transcriptional regulators in malignant cells. This critically impacts the expression and function of the key tumor suppressors ATRX and p53. Significantly, SCARNA15 loss impairs p53-mediated redox homeostasis and hampers cancer cell survival, motility and anchorage-independent growth. In sum, these findings highlight an unanticipated role for SCARNA15 and Ψ in directing cancer-associated splicing programs.


Sign in / Sign up

Export Citation Format

Share Document