superconducting tokamak
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 46)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yu-Qiang Tao ◽  
Guo-Sheng Xu ◽  
Ling-Yi Meng ◽  
Rui-Rong Liang ◽  
Lin Yu ◽  
...  

Abstract A series of L-mode discharges have been conducted in the new ‘corner slot’ divertor on the Experimental Advanced Superconducting Tokamak (EAST) to study the divertor plasma behavior through sweeping strike point. The plasma control system controls the strike point sweeping from the horizontal target to the vertical target through poloidal field coils, with keeping the main plasma stability. The surface temperature of the divertor target cools down as the strike point moves away, indicating that sweeping strike point mitigates the heat load. To avoid the negative effect of probe tip damage, a method based on sweeping strike point is used to get the normalized profile and study the decay length of particle and heat flux on the divertor target λ js , λ q .In the discharges with high radio-frequency (RF) heating power, electron temperature T e is lower and λ js is larger when the strike point locates on the horizontal target compared to the vertical target, probably due to the corner effect. In the Ohmic discharges, λ js , λ q are much larger compared to the discharges with high RF heating power, which may be attributed to lower edge T e .


2021 ◽  
pp. 112961
Author(s):  
G. Matsunaga ◽  
Y. Shibama ◽  
F. Okano ◽  
J. Yagyu ◽  
M. Takechi ◽  
...  

Author(s):  
Debjyoti Basu ◽  
D Raju ◽  
Raj Singh ◽  
Aparajita Mukherjee ◽  
Manoj Patel ◽  
...  

Abstract In general, superconducting tokamaks require low loop voltage current start up for the safety purpose of its poloidal field coils. The loop voltage inside the vacuum vessel of Steady-state Superconducting Tokamak (SST-1) is low in nature since its central solenoid is located outside the cryostat. The low loop voltage current start up of the SST-1 is routinely performed by Electron Cyclotron Resonance (ECR) method at the toroidal magnetic field Bt=1.5T(first harmonic) and 0.75T(second harmonic). Recently, an alternative RF based plasma current start up system had been planned for operating the machine specially for higher toroidal magnetic field regime 1.5T ≤ Bt ≤3T. The system is already developed based on an antenna system, made of series combinations of two at spiral antenna, to assist plasma current start up at lower inductive electric field. It is already tested and installed in SST-1 chamber. The system testing had been performed without background magnetic field within frequency regime 35-60MHz at present. The test results show that it can produce electron density ne ≈1016m-3 measured by the Langmuir probe in expense of 500W RF power. The spectroscopy results indicate that its capability to produce plasma density higher than 1013 m-3 and electron temperature Te = 2 -6eV. In addition, it also shows that the presence of turbulent electric field of the order of 106V/m at antenna center and finite anomalous temperature of neutral particles. Calculations show that the obtained density is enough for SST-1 low loop voltage plasma breakdown. The antenna system is also capable to produce plasma at higher frequencies. This article will discuss the development of the prototype and the installed antenna system along with their test results in detail.


2021 ◽  
Vol 169 ◽  
pp. 112699
Author(s):  
Yong Che ◽  
Qing Zang ◽  
Xiaofeng Han ◽  
Shumei Xiao ◽  
Jiahui Hu ◽  
...  

2021 ◽  
Vol 92 (3) ◽  
pp. 033513
Author(s):  
Jinseok Ko ◽  
Steve Scott ◽  
Fred Levinton ◽  
Matthew Galante ◽  
Steve Sabbagh ◽  
...  

Author(s):  
HAMADA Kazuya ◽  
FUKUI Kazuma ◽  
KAWANO Katsumi ◽  
NATSUME Kyohei ◽  
ONISHI Yoshihiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document