urinary microbiota
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 66)

H-INDEX

12
(FIVE YEARS 4)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262095
Author(s):  
Lena M. Biehl ◽  
Fedja Farowski ◽  
Catharina Hilpert ◽  
Angela Nowag ◽  
Anne Kretzschmar ◽  
...  

Background The understanding of longitudinal changes in the urinary microbiota of healthy women and its relation to intestinal microbiota is limited. Methods From a cohort of 15 premenopausal women without known urogenital disease or current symptoms, we collected catheter urine (CU), vaginal and periurethral swabs, and fecal samples on four visits over six months. Additionally, ten participants provided CU and midstream urine (MU) to assess comparability. Urine was subjected to expanded culture. 16S rRNA gene sequencing was performed on all urine, fecal, and selected vaginal and periurethral samples. Sequence reads were processed (DADA2 pipeline) and analyzed using QIIME 2 and R. Results Relative abundances of urinary microbiota were variable over 6–18 months. The degree of intraindividual variability of urinary microbiota was higher than that found in fecal samples. Still, nearly half of the observed beta diversity of all urine samples could be attributed to differences between volunteers (R2 = 0.48, p = 0.001). After stratification by volunteer, time since last sexual intercourse was shown to be a factor significantly contributing to beta diversity (R2 = 0.14, p = 0.001). We observed a close relatedness of urogenital microbial habitats and a clear distinction from intestinal microbiota in the overall betadiversity analysis. Microbiota compositions derived from MU differed only slightly from CU compositions. Within this analysis of low-biomass samples, we identified contaminating sequences potentially stemming from sequencing reagents. Conclusions Results from our longitudinal cohort study confirmed the presence of a rather variable individual urinary microbiota in premenopausal women. These findings from catheter urine complement previous observations on temporal dynamics in voided urine. The higher intraindividual variability of urinary microbiota as compared to fecal microbiota will be a challenge for future studies investigating associations with urogenital diseases and aiming at identifying pathogenic microbiota signatures.


Author(s):  
Aya Karam ◽  
Georges Mjaess ◽  
Simone Albisinni ◽  
Yara El Daccache ◽  
Marialida Farah ◽  
...  

Author(s):  
Vivian H. Nguyen ◽  
Fatima Khan ◽  
Braden M. Shipman ◽  
Michael L. Neugent ◽  
Neha V. Hulyalkar ◽  
...  

Glycosaminoglycans (GAGs) are linear polysaccharides and are among the primary components of mucosal surfaces in mammalian systems. The GAG layer lining the mucosal surface of the urinary tract is thought to play a critical role in urinary tract homeostasis and provide a barrier against urinary tract infection (UTI). This key component of the host-microbe interface may serve as a scaffolding site or a nutrient source for the urinary microbiota or invading pathogens, but its exact role in UTI pathogenesis is unclear. Although members of the gut microbiota have been shown to degrade GAGs, the utilization and degradation of GAGs by the urinary microbiota or uropathogens had not been investigated. In this study, we developed an in vitro plate-based assay to measure GAG degradation and utilization and used this assay to screen a library of 37 urinary bacterial isolates representing both urinary microbiota and uropathogenic species. This novel assay is more rapid, inexpensive, and quantitative compared to previously developed assays, and can measure three of the major classes of human GAGs. Our findings demonstrate that this assay captures the well-characterized ability of Streptococcus agalactiae to degrade hyaluronic acid and partially degrade chondroitin sulfate. Additionally, we present the first known report of chondroitin sulfate degradation by Proteus mirabilis, an important uropathogen and a causative agent of acute, recurrent, and catheter-associated urinary tract infections (CAUTI). In contrast, we observed that uropathogenic Escherichia coli (UPEC) and members of the urinary microbiota, including lactobacilli, were unable to degrade GAGs.


Author(s):  
Abdourahamane Yacouba ◽  
Maryam Tidjani Alou ◽  
Jean-Christophe Lagier ◽  
Grégory Dubourg ◽  
Didier Raoult

Author(s):  
Filippo Pederzoli ◽  
Valentina Murdica ◽  
Andrea Salonia ◽  
Massimo Alfano
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jan Hrbacek ◽  
Daniel Morais ◽  
Pavel Cermak ◽  
Vitezslav Hanacek ◽  
Roman Zachoval

AbstractConsiderable variation exists in the methodology of urinary microbiota studies published so far including the cornerstone of any biomedical analysis: sample collection. The aim of this study was to compare the urinary microbiota of first-catch voided urine (FCU), mid-stream voided urine (MSU) and aseptically catheterised urine in men and define the most suitable urine sampling method. Forty-nine men (mean age 71.3 years) undergoing endoscopic urological procedures were enrolled in the study. Each of them contributed three samples: first-catch urine (FCU), mid-stream urine (MSU) and a catheterised urine sample. The samples were subjected to next-generation sequencing (NGS, n = 35) and expanded quantitative urine culture (EQUC, n = 31). Using NGS, Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant phyla in our population. The most abundant genera (in order of relative abundance) included: Prevotella, Veillonella, Streptococcus, Porphyromonas, Campylobacter, Pseudomonas, Staphylococcus, Ezakiella, Escherichia and Dialister. Eighty-two of 105 samples were dominated by a single genus. FCU, MSU and catheterised urine samples differed significantly in three of five alpha-diversity measures (ANOVA, p < 0.05): estimated number of operational taxonomic units, Chao1 and abundance-based coverage estimators. Beta-diversity comparisons using the PIME method (Prevalence Interval for Microbiome Evaluation) resulted in clustering of urine samples according to the mode of sampling. EQUC detected cultivable bacteria in 30/31 (97%) FCU and 27/31 (87%) MSU samples. Only 4/31 (13%) of catheterised urine samples showed bacterial growth. Urine samples obtained by transurethral catheterisation under aseptic conditions seem to differ from spontaneously voided urine samples. Whether the added value of a more exact reflection of the bladder microbiota free from urethral contamination outweighs the invasiveness of urethral catheterisation remains to be determined.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2082
Author(s):  
Sang Wook Lee ◽  
Si Hyun Kim ◽  
Kwang Woo Lee ◽  
Woong Bin Kim ◽  
Hae Woong Choi ◽  
...  

As urine is not sterile, inflammatory reactions caused by dysbiosis of the urinary microbiota may induce interstitial cystitis. A study was conducted to determine whether β-defensin 2 (BD-2), a specific antimicrobial peptide in the bladder, could be used as a novel diagnostic marker for ulcerative interstitial cystitis (IC). Urine samples from three female groups were examined: healthy controls (n = 34, Control group), non-Hunner type IC (n = 40, NHIC group), and Hunner type IC (n = 68, HIC group). Urine samples were collected via a transurethral catheter and assayed for BD-2 levels using enzyme linked immunosorbent assay. Under general or regional anesthesia, cystoscopy with diagnostic and therapeutic hydrodistension was performed in NHIC and HIC groups patients. These patients underwent a biopsy of the bladders. Based on the urinary specimens from 142 patients, BD-2 expression was found to be 18-fold higher in patients with Hunner type IC than in patients with non-Hunner type IC. The enhanced secretion of BD-2 exhibited a strong correlation with increased mast cell counts associated with bladder IC pathology. Enhanced urinary secretion of the antimicrobial peptide BD-2 from Hunner type IC patients associated with clinical phenotypes and demonstrated relatively robust levels to be used as a potential biomarker. Moreover, the increased urinary level of BD-2 may suggest a new possibility of biomarkers caused by dysbiosis of the urinary microbiota in ulcerative IC.


2021 ◽  
pp. 105257
Author(s):  
Narjess Bostanghadiri ◽  
Pardis Ziaeefar ◽  
Fatemeh Sameni ◽  
Mohammad Mahmoudi ◽  
Ali Hashemi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document