oxygen deficit
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 52)

H-INDEX

32
(FIVE YEARS 3)

2022 ◽  
Vol 23 (1) ◽  
pp. 542
Author(s):  
Yan Zhang ◽  
Lanjie Zheng ◽  
Liu Yun ◽  
Li Ji ◽  
Guanhui Li ◽  
...  

Catalases (CATs) are present in almost all living organisms and play important roles in plant development and response to various stresses. However, there is relatively little information on CAT genes in wheat and related Triticeae species. A few studies on CAT family genes in wheat have been reported. In this study, ten CAT proteins (TaCATs) were identified in wheat and classified into three groups based on their phylogenetic features and sequence analysis. The analysis of the structure and motif composition of the TaCAT proteins suggested that a segmental duplication event occurred in the TaCAT gene family. Collinearity relationship analysis among different species showed that there were three orthologous CAT genes in rice and in maize. By analyzing the cis-elements in the promoter regions, we speculated that TaCAT genes expression might be regulated by light, oxygen deficit, methyl jasmonate and abscisic acid, and by transcription factors such as MYB. A Gene Ontology (GO)-based analysis showed that TaCAT proteins may be related to the response to various stresses, are cytoplasm localized, and may function as antioxidant enzymes. RT-qPCR and transcriptome data analyses exhibited distinct expression patterns of TaCAT genes in different tissues and in response to various treatments. In this study, a comprehensive analysis of wheat CAT genes was performed, enriching our knowledge of CAT genes and providing a foundation for further functional analyses of this gene family in wheat.


Background: To observe the clinical effect and safety of the sealing-type three-cavities ventilation joint in painless bronchoscopy. To compare the respiratory mechanics between I-gel laryngeal mask and tracheal tube-controlled breath during bronchoscopy. Methods: 200 patients underwent bronchoscopy were recruited and randomly assigned to general anesthesia group (group Ⅰ, n = 100) and local anesthesia group (group Ⅱ, n = 100). General anesthesia group were divided into two groups, the I-gel laryngeal mask combined with sealing-type three-cavities ventilation joint group group(n=50) and the endotracheal tube combined with sealing-type three-cavities ventilation joint group(n=50). Patients in Group I were adopted by I-gel laryngeal mask or endotracheal tube with the sealing-type three-cavities ventilation joint after the induction anesthesia with remifentanil, propofol and succinylcholine. In group II, patients were anaesthetized with lidocaine and followed by 2mg/ kg propofol iv, and spontaneous respirations were retained with nasal cannula. All patients’ vital signs, endoscopic related adverse reactions and arterial blood gas analysis were recorded during the procedure. Results: Group I showed little changes of vital signs (P <0.05), and less adverse reaction such as the intraoperative hypoxia and intraoperative body movement (P <0.05), and no significant decrease of oxygen partial pressure (P <0.05). There is no significant difference in respiratory mechanics including tidal volume and airway pressure between two subgroups in group I(P>0.05). Conclusion: Sealing-type three-cavities ventilation joint prevents the oxygen deficit and makes it possible for us to examine patients through bronchoscope under general anesthesia without gas leakage. Moreover, sealing-type three-cavities ventilation joint provides safe and effective airway control while it does not change respiratory mechanics in endotracheal tube group compared with I-gel laryngeal mask makes endotracheal tube an alternative solution in bronchoscope. Take all these in consideration, sealing-type three-cavities ventilation joint proves to be a feasible method in bronchoscope.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1251
Author(s):  
Ziyuan Liu ◽  
Jue Kou ◽  
Yi Xing ◽  
Chunbao Sun ◽  
Peng Liu ◽  
...  

The issue of poor aeration efficiency and low oxygen transfer in the heap leaching of gold has gained considerable attention. In this study, ozone ice was studied as an oxygen release reagent in the cyanide heap leaching of gold at a low temperature of approximately 5 °C, owing to its effective oxidation and clean and green properties. Quartz Crystal Microbalance with Dissipation (QCM-D) was used to monitor the effect of different ratios of cyanide and oxygen concentrations on the gold leaching rate. The results showed that the leaching rate doubled when the dissolved oxygen (DO) was increased from 8.2 mg/L to 12 mg/L at a relatively high cyanide concentration of 60 mg/L. The release of oxygen during the process of ozone ice melting was analyzed by simulating the oxygen-deficient condition of the ore heap in column leaching. In the first stage of ice melting, the DO in the solution increased dramatically, and the rate of increase improved with increased initial ozone concentration in the ice. In the second stage of ice melting, the rate of increase in the DO of the solution was not significantly affected by the initial ozone concentration in the ice; this was consistent with the decomposition rate of ozone. The addition of ozone ice containing 300 mg/L ozone increased the gold extraction by 4.1% in the ore column leaching experiment, compared to a column with no ozone ice. However, continuously increasing the ozone concentration up to 600 mg/L had no further significant effect, because the dissolved oxygen in the leaching solution reached saturation. The results facilitate a better understanding of the decomposition law of ozone in the melting process of ozone ice and help to improve the oxygen deficit state in gold leaching heaps.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2979
Author(s):  
Renata Tandyrak ◽  
Jolanta Katarzyna Grochowska ◽  
Renata Augustyniak ◽  
Michał Łopata

Meromictic lakes are unique aquatic ecosystems that occur extremely rarely. The phenomenon of meromixis can result from both natural and anthropogenic factors. The aim of this study was to analyse thermal and chemical stratification in a small, deep (6 ha, H max = 24.5 m) lake. The evaluated lake had a typical summer thermal profile with a shallow epilimnion, a sharp thermocline, and a distinct monimolimnion layer in the hypolimnion, which was also maintained during circulation. The lake had a clinograde oxygen profile, with an oxygen deficit in the metalimnion and permanent anoxic conditions in the deeper layers, including during circulation. A redox zone was identified during summer stagnation. The monimolimnion formed a thermally isolated layer at a depth of around 15 m, and the chemocline was situated above the monimolimnion. In the chemocline, the EC gradient ranged from 61 to 77 μS·cm−1 per meter of depth in the summer and from 90 to 130 μS·cm−1 per meter of depth during circulation. EC was significantly correlated with Ca2+ concentration (r2 = 0.549). Chemical stratification, particularly with regard to organic matter distribution, was observed in the chemocline. The monimolimnion severely limited nutrient internal loading.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zi-wei Zhou ◽  
Qing-yang Wu ◽  
Zi-xin Ni ◽  
Qing-cai Hu ◽  
Yun Yang ◽  
...  

Aroma is an essential quality indicator of oolong tea, a tea derived from the Camellia sinensis L. plant. Carboxylic 6 (C6) acids and their derivative esters are important components of fatty acid (FA)-derived volatiles in oolong tea. However, the formation and regulation mechanism of C6 acid during postharvest processing of oolong tea remains unclear. To gain better insight into the molecular and biochemical mechanisms of C6 compounds in oolong tea, a combined analysis of alcohol dehydrogenase (ADH) activity, CsADH2 key gene expression, and the FA-derived metabolome during postharvest processing of oolong tea was performed for the first time, complemented by CsHIP (hypoxia-induced protein conserved region) gene expression analysis. Volatile fatty acid derivative (VFAD)-targeted metabolomics analysis using headspace solid-phase microextraction–gas chromatography time-of-flight mass spectrometry (HS-SPEM-GC-TOF-MS) showed that the (Z)-3-hexen-1-ol content increased after each turnover, while the hexanoic acid content showed the opposite trend. The results further showed that both the ADH activity and CsADH gene expression level in oxygen-deficit-turnover tea leaves (ODT) were higher than those of oxygen-turnover tea leaves (OT). The C6-alcohol-derived ester content of OT was significantly higher than that of ODT, while C6-acid-derived ester content showed the opposite trend. Furthermore, the HIP gene family was screened and analyzed, showing that ODT treatment significantly promoted the upregulation of CsHIG4 and CsHIG6 gene expression. These results showed that the formation mechanism of oolong tea aroma quality is mediated by airflow in the lipoxygenase–hydroperoxide lyase (LOX-HPL) pathway, which provided a theoretical reference for future quality control in the postharvest processing of oolong tea.


2021 ◽  
Vol 12 ◽  
Author(s):  
G. Kim Prisk ◽  
John B. West

The efficiency of pulmonary gas exchange has long been assessed using the alveolar-arterial difference in PO2, the A-aDO2, a construct developed by Richard Riley ~70years ago. However, this measurement is invasive (requiring an arterial blood sample), time consuming, expensive, uncomfortable for the patients, and as such not ideal for serial measurements. Recent advances in the technology now provide for portable and rapidly responding measurement of the PO2 and PCO2 in expired gas, which combined with the well-established measurement of arterial oxygen saturation via pulse oximetry (SpO2) make practical a non-invasive surrogate measurement of the A-aDO2, the oxygen deficit. The oxygen deficit is the difference between the end-tidal PO2 and the calculated arterial PO2 derived from the SpO2 and taking into account the PCO2, also measured from end-tidal gas. The oxygen deficit shares the underlying basis of the measurement of gas exchange efficiency that the A-aDO2 uses, and thus the two measurements are well-correlated (r2~0.72). Studies have shown that the new approach is sensitive and can detect the age-related decline in gas exchange efficiency associated with healthy aging. In patients with lung disease the oxygen deficit is greatly elevated compared to normal subjects. The portable and non-invasive nature of the approach suggests potential uses in first responders, in military applications, and in underserved areas. Further, the completely non-invasive and rapid nature of the measurement makes it ideally suited to serial measurements of acutely ill patients including those with COVID-19, allowing patients to be closely monitored if required.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aurelien Paulmier ◽  
Gerard Eldin ◽  
José Ochoa ◽  
Boris Dewitte ◽  
Joël Sudre ◽  
...  

The oxygen deficient mesopelagic layer (ODL) off Peru has concentrations below 5 μmol O2 kg–1 and is delimited by a shallow upper oxycline with strong vertical gradient and a more gradual lower oxycline (lOx). Some regions show a narrow band of slightly increased oxygen concentrations within the ODL, an intermediate oxygen layer (iO2). CTD, oxygen and lowered Acoustic Doppler Current Profiler (LADCP, 300 kHz) profiles were taken on the shelf edge and outside down to mostly 2000 m. We evaluate here the acoustic volume backscatter strength of the LADCP signal representing organisms of about 5 mm size. Dominant features of the backscatter profiles were a minimum backscatter strength within the ODL, and just below the lOx a marked backscatter increase reaching a maximum at less than 3.0 μmol O2 kg–1. Below this maximum, the acoustic backscatter strength gradually decreased down to 1000 m below the lOx. The backscatter strength also increased at the iO2 in parallel to the oxygen concentration perturbations marking the iO2. These stable backscatter features were independent of the time of day and the organisms represented by the backscatter had to be adapted to live in this microaerobic environment. During daylight, these stable structures were overlapped by migrating backscatter peaks. Outstanding features of the stable backscatter were that at very low oxygen concentrations, the volume backscatter was linearly related to the oxygen concentration, reaching half peak maximum at less than 2.0 μmol O2 kg–1 below the lOx, and the depth-integrated backscatter of the peak below the lOx was higher than the integral above the Ox. Both features suggest that sufficient organic material produced at the surface reaches to below the ODL to sustain the major fraction of the volume backscatter-producing organisms in the water column. These organisms are adapted to the microaerobic environment so they can position themselves close to the lower oxycline to take advantage of the organic particles sinking out of the ODL.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jaya Shankar Tumuluru ◽  
Bahman Ghiasi ◽  
Nick R. Soelberg ◽  
Shahab Sokhansanj

Torrefaction, a thermal pretreatment process, is gaining attention as it improves the physical properties and chemical composition of biomass for recycling. During torrefaction, biomass is heated slowly in an inert or oxygen-deficit environment to a maximum temperature of 300°C. The torrefaction process creates a solid uniform product with lower moisture and higher energy content than the raw biomass. During torrefaction, moisture and some volatile organic compounds volatilize from the biomass. Depending on stoichiometry and other conditions, non-condensable gas species, including CO and CO2, are formed. The specific objectives of this research are to: 1) understand the impact of torrefaction on product quality in terms of the physical properties, chemical composition, and storage behavior of the biomass; 2) discuss the various reactors used for biomass torrefaction; and 3) develop a model for designing a moving bed torrefier, considering fundamental heat and mass transfer calculations. Torrefaction improves the physical properties, chemical composition, and energy and storage properties of biomass. Torrefaction of biomass at 300°C increases the energy content by about 30% as compared to the raw biomass. For example, when torrefied, the calorific value of the biomass increases from about 18–19 MJ/kg to about 20–24 MJ/kg. The torrefied material has a moisture content of about 1–3% wet basis (w.b.). The loss of the hydroxyl group during torrefaction makes the biomass hydrophobic. The brittle nature of the torrefied biomass makes it easier to grind. The devolatilization and carbonization reactions change the proximate and ultimate composition. The carbon content increases, whereas the hydrogen, oxygen, and nitrogen content of the biomass decreases. Despite its superior properties, the commercialization of torrefaction technology is slow due to challenges associated with reactor design and final product quality. The different types of reactors that are typically used for biomass torrefaction are the fixed bed, rotary drum, microwave, fluidized bed, and horizontal and vertical moving bed. The moving bed reactor has gained popularity among the different torrefaction reactor designs as it is easy to operate and scale. In addition, it helps produce a uniform torrefied product. In this paper, different moving bed torrefaction and gas recycle concepts are conceptualized to assess the features, advantages, and disadvantages of various design and operating concepts. These designs include example concepts for: 1) vertical and horizontal torrefaction reactors; 2) recycle of all or a portion of the torrefier off-gas; 3) counter and co-flowing gas and biomass in the torrefier; 4) controls for the system temperatures, pressures, flow rates, and gas compositions; and 5) the ability to sample the biomass feed, torrefied product, and gas streams for analysis as needed to investigate the thermal decomposition, physical behavior, and operational performance of the torrefaction system. The article also briefly describes the solid feed system, gas supply and recycle system, solid product management, torrefier gas monitoring, control system, and fugitive dust emissions control. The model presented in this paper includes a set of equations for basic calculations to configure the torrefaction reactor dimensions, such as diameter and height of the moving bed torrefier for different capacities based on target and calculated solids and gas velocities, residence times, and temperatures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Erik P. Andersson ◽  
Glenn Björklund ◽  
Kerry McGawley

IntroductionTo date, no study has compared anaerobic capacity (AnC) estimates computed with the maximal accumulated oxygen deficit (MAOD) method and the gross energy cost (GEC) method applied to treadmill running exercise.PurposeFour different models for estimating anaerobic energy supply during treadmill running exercise were compared.MethodsFifteen endurance-trained recreational athletes performed, after a 10-min warm-up, five 4-min stages at ∼55–80% of peak oxygen uptake, and a 4-min time trial (TT). Two linear speed-metabolic rate (MR) regression models were used to estimate the instantaneous required MR during the TT (MRTT_req), either including (5+YLIN) or excluding (5-YLIN) a measured Y-intercept. Also, the average GEC (GECAVG) based on all five submaximal stages, or the GEC based on the last submaximal stage (GECLAST), were used as models to estimate the instantaneous MRTT_req. The AnC was computed as the difference between the MRTT_req and the aerobic MR integrated over time.ResultsThe GEC remained constant at ∼4.39 ± 0.29 J⋅kg–1⋅m–1 across the five submaximal stages and the TT was performed at a speed of 4.7 ± 0.4 m⋅s–1. Compared with the 5-YLIN, GECAVG, and GECLAST models, the 5+YLIN model generated a MRTT_req that was ∼3.9% lower, with corresponding anaerobic capacities from the four models of 0.72 ± 0.20, 0.74 ± 0.16, 0.74 ± 0.15, and 0.54 ± 0.14 kJ⋅kg–1, respectively (F1.07,42 = 13.9, P = 0.002). The GEC values associated with the TT were 4.22 ± 0.27 and 4.37 ± 0.30 J⋅kg–1⋅m–1 for 5+YLIN and 5-YLIN, respectively (calculated from the regression equation), and 4.39 ± 0.28 and 4.38 ± 0.27 J⋅kg–1⋅m–1 for GECAVG and GECLAST, respectively (F1.08,42 = 14.6, P &lt; 0.001). The absolute typical errors in AnC ranged between 0.03 and 0.16 kJ⋅kg–1 for the six pair-wise comparisons and the overall standard error of measurement (SEM) was 0.16 kJ⋅kg–1.ConclusionThese findings demonstrate a generally high disagreement in estimated anaerobic capacities between models and show that the inclusion of a measured Y-intercept in the linear regression (i.e., 5+YLIN) is likely to underestimate the MRTT_req and the GEC associated with the TT, and hence the AnC during maximal 4-min treadmill running.


Sign in / Sign up

Export Citation Format

Share Document