acidic waters
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
pp. geochem2021-066
Author(s):  
S.J. Day

Blending of potentially acid generating (PAG) waste rock with non-PAG waste rock to create a rock mixture which performs as non-PAG is a possible approach to permanent prevention of acid rock drainage (ARD) for PAG waste rock. In 2012, a field weathering study using 300 kg samples was implemented at Teck Coal's Quintette Project located in northeastern British Columbia, Canada to test the prevention of acid generation in the PAG waste rock by dissolved carbonate leached from overlying non-PAG waste rock and direct neutralization of acidic water from PAG waste rock by contact with non-PAG waste rock.After eight years of monitoring the experiments, the layered non-PAG on PAG barrels provided proof-of-concept that as the thickness of the PAG layer increases relative to the thickness of the non-PAG layers, acidic waters are more likely to be produced. The PAG on non-PAG layering has resulted in non-acidic water and no indications of metal leaching despite accelerated oxidation in the PAG layer shown by sulphate loadings. The study has demonstrated that the scale of heterogeneity of PAG and non-PAG materials is a critical consideration for providing certainty that rock blends designed to be non-PAG will perform as non-PAG in perpetuity. This is contrary to the standard paradigm in which an excess of acid-consuming minerals is often considered sufficient alone to ensure ARD is not produced.


Author(s):  
Yair G. Morales ◽  
Pia Lipp

Abstract Soft acidic waters are often treated for drinking water purposes by using limestone filters to attain chemical equilibrium. The present study investigated the process parameters of a relatively new process combination in which powdered calcium carbonate (CaCO3) was added prior to an ultrafiltration (UF). In order to reach the targeted pH value (≥7.8), dosing concentration, type of material and retention time were evaluated in pilot-scale experiments. The deacidification followed the same kinetics as for limestone filtration and yielded similar filtrate characteristics with dosing concentrations of 20 and 40 g/L CaCO3. No significant increase in transmembrane pressure was observed during the operation of a pilot-scale UF module at low flux (34 L m−2 h−1). Critical flux was determined in a lab scale to evaluate the potential impact of CaCO3 particles on the UF operation. Stepping-flux experiments revealed the presence of fouling only at high-dosing concentrations, resulting in a critical flux of 55 L m−2 h−1. At a higher flux, a CaCO3-fouling layer was formed, which decreased the membrane's permeability by 20% over 5 h. Considering that effective air-enhanced backwash and acidic chemical cleanings will be implemented in large-scale applications, the investigated process combination promises to be an appropriate treatment technology for turbid and soft acidic waters.


Zootaxa ◽  
2021 ◽  
Vol 4949 (1) ◽  
pp. 1-23
Author(s):  
PETER S. CRANSTON ◽  
MATT KROSCH ◽  
ANDREW M. BAKER

The diversity and endemism of Australian Tanypodinae (Diptera: Chironomidae) has been unclear from morphological comparisons with well-grounded northern hemisphere taxonomy. As part of a comprehensive study, here we focus on one of the few described endemic genera, Yarrhpelopia Cranston. Extensive and intensive new sampling and newly-acquired molecular data provides clarity for the type species, Yarrhpelopia norrisi Cranston and allows recognition of congeners and potential sister group(s). We describe Yarrhpelopia acorona Cranston & Krosch sp. n., and we recognise a third species from Western Australia, retaining an informal code ‘V20’ due to inadequate reared / associated material for formal description. We recognise a robust clade Coronapelopia Cranston & Krosch gen. n., treated as a genus new to science for two new species, Coronapelopia valedon Cranston & Krosch sp. n. and Coronapelopia quadridentata Cranston & Krosch sp. n., from eastern Australia, each described in their larval and pupal stages and partial imaginal stages. Interleaved between the independent new Australian clades Yarrhpelopia and Coronapelopia are New World Pentaneura and relatives, that allow a tentative inference of a dated gondwanan (austral) connection. Expanded sampling indicates that Y. norrisi, although near predictably present in mine-polluted waters, is not obligate but generally indicates acidic waters, including natural swamps and Sphagnum bogs. The inferred acidophily, including in drainages of mine adits, applies to many taxa under consideration here. 


2021 ◽  
Vol 20 (1) ◽  
pp. 5-30
Author(s):  
Zdzisław M. Migaszewski ◽  
Agnieszka Gałuszka

Abstract This overview presents the updated physicochemical characteristics of thallium and its stable isotopes (205Tl/203Tl) in the context of their occurrence and fate in abiotic and biotic systems. This also deals with the thallium behavior in geochemical interactions in and between different environmental compartments and describes its natural (geogenic) and industrial sources. The particular emphasis is placed on some extreme environments, including acid mine drainage areas where oxidation processes of Tl-bearing pyrite and other sulfides lead to very high concentrations of this metal in reactive acidic waters. Many geochemical studies have also employed stable thallium isotopes to reconstruct redox conditions in different environmental systems, to fingerprint relative pollution source strengths and to evaluate mobility of this element and its geochemical interactions in the mineral-water and soil–plant systems. This is the reason why this overview also highlights the growing potential of stable Tl isotopes in solving different geologic and environmental issues. Graphic abstract


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 261
Author(s):  
Georgios Fytianos ◽  
Anastasios Tsikrikis ◽  
Costas A. Anagnostopoulos ◽  
Efthimios Papastergiadis ◽  
Petros Samaras

Concrete sewer pipes can be deteriorated by sulfuric acid (H2SO4), which is created by the oxidation of hydrogen sulfide in the presence of certain bacteria inside the sewers. This process is called biocorrosion. In this paper, H2SO4 (i.e., chemical, non-biogenic) was used to study acid attack on concrete samples. The authors conducted experiments under different acid flows and concentrations, to account for the conditions prevailing in sewage networks exposed to flowing acidic waters. The effect of intermittent stormwater on the removal of protective layers was studied in addition to constant flow runs. Specimens’ erosion depth was measured with a Vernier micrometer. In addition, unconfined compression at an axial strain rate of 0.0016 mm/mm/min was used for the estimation of unconfined compressive strength and elastic modulus. Moreover, the formation of gypsum as a protective layer and its role in biocorrosion was discussed. From this study, it was concluded that although the utilization of constant flowrates of acidic waters represents an important indication of corrosion mechanism, intermittent sewage and water flows should be taken into account, corresponding to real conditions in sewage networks, and resulting into accelerated concrete corrosion. Stormwater in combined sewers could remove the protective gypsum layer, thus accelerating chemical corrosion; however, in the presence of biogenic H2SO4, the removal of gypsum by excess flows due to stormwater could have a positive effect on corrosion mitigation. Finally, for combined sewers, selected coatings should withstand the effect of stormwater and high-velocity water flow tests should be included in future studies.


Author(s):  
Ilenia M. D’Angeli ◽  
Jo De Waele ◽  
Adriano Fiorucci ◽  
Bartolomeo Vigna ◽  
Stefano M. Bernasconi ◽  
...  

AbstractThis work describes the geochemical and hydrogeological characteristics of Santa Cesarea Terme, an active sulfuric acid speleogenetic system located along the Adriatic coastline (Apulia, southern Italy). It represents a very peculiar site, where rising thermal and acidic waters mix with seawater creating undersaturated solutions with respect to CaCO3, able to dissolve and corrode limestone and create caves. The Santa Cesarea Terme system is composed of four caves: Fetida, Sulfurea, Gattulla, and Solfatara. Hypogene morphologies and abundant deposits of native sulfur (especially in Gattulla Cave) and sulfate minerals are present in these caves. Fetida and Gattulla caves were investigated primarily because they are easily accessible throughout the whole year through artificial entrances, the other caves being reachable only from the sea. Geochemical analysis of water, monitoring of cave atmosphere, and measurement of the stable isotopes of S, O, and H helped to identify the main processes occurring in this complex cave system. In particular, changes in Ba2+ and Sr2+ concentration allowed for the identification of two main domains of influence, characterized by marine and rising acidic waters.


Sign in / Sign up

Export Citation Format

Share Document