matrix attachment region
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 10)

H-INDEX

33
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1533
Author(s):  
Noriaki Shimizu

Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome, or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it had a sequence element required for replication initiation (the replication initiation region/matrix attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of such extrachromosomal circles are summarized and discussed by reviewing recent articles on these topics. Such studies are critical in the understanding and treating human cancer, and also for the production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes in the cells.


2021 ◽  
Vol 22 (5) ◽  
pp. 2318
Author(s):  
Lyes Toualbi ◽  
Maria Toms ◽  
Mariya Moosajee

Inherited retinal diseases (IRDs) are a heterogeneous group of disorders causing progressive loss of vision, affecting approximately one in 1000 people worldwide. Gene augmentation therapy, which typically involves using adeno-associated viral vectors for delivery of healthy gene copies to affected tissues, has shown great promise as a strategy for the treatment of IRDs. However, the use of viruses is associated with several limitations, including harmful immune responses, genome integration, and limited gene carrying capacity. Here, we review the advances in non-viral gene augmentation strategies, such as the use of plasmids with minimal bacterial backbones and scaffold/matrix attachment region (S/MAR) sequences, that have the capability to overcome these weaknesses by accommodating genes of any size and maintaining episomal transgene expression with a lower risk of eliciting an immune response. Low retinal transfection rates remain a limitation, but various strategies, including coupling the DNA with different types of chemical vehicles (nanoparticles) and the use of electrical methods such as iontophoresis and electrotransfection to aid cell entry, have shown promise in preclinical studies. Non-viral gene therapy may offer a safer and effective option for future treatment of IRDs.


2020 ◽  
Vol 29 (2) ◽  
pp. 171-186
Author(s):  
Yoslaine Ruiz ◽  
Pedro Luis Ramos ◽  
Jeny Soto ◽  
Meilyn Rodríguez ◽  
Natacha Carlos ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eleana F. Stavrou ◽  
Emannuouil Simantirakis ◽  
Meletios Verras ◽  
Carlos Barbas ◽  
George Vassilopoulos ◽  
...  

AbstractWe report the development of episomal vectors for the specific γ-globin transcription activation in its native position by activator Zif-VP64, based on the Scaffold/Matrix Attachment Region (S/MAR) for episomal retention and the β-globin Replicator, the DNA replication-Initiation Region from the β-globin locus. Vector Zif-VP64-Ep1 containing transcription cassettes CMV- Zif-VP64 and CMV-eGFP-S/MAR transfected a)K562 cells; b)murine β-YAC bone marrow cells (BMC); c)human haematopoietic progenitor CD34+ cells, with transfection efficiencies of 46.3 ± 5.2%, 23.0 ± 2.1% and 24.2 ± 2.4% respectively. K562 transfections generated stable cell lines running for 28 weeks with and without selection, with increased levels of γ-globin mRNA by 3.3 ± 0.13, of γ-globin protein by 6.75 ± 3.25 and HbF protein by 2 ± 0.2 fold, while the vector remained episomal and non integrated. In murine β-YAC BMCs the vector mediated the activation of the silent human γ-globin gene and in CD34+ cells, increased γ-globin mRNA, albeit only transiently. A second vector Zif-VP64-Ep2, with both transcription cassettes carrying promoter SFFV instead of CMV and the addition of β-globin Replicator, transferred into CD34+ cells, produced CD34+ eGFP+ cells, that generated colonies in colony forming cell cultures. Importantly, these were 100% fluorescent, with 2.11 ± 0.13 fold increased γ-globin mRNA, compared to non-transfected cells. We consider these episomal vectors valid, safer alternatives to viral vectors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Takahito Ohira ◽  
Koichi Miyauchi ◽  
Narumi Uno ◽  
Noriaki Shimizu ◽  
Yasuhiro Kazuki ◽  
...  

AbstractGene amplification methods play a crucial role in establishment of cells that produce high levels of recombinant protein. However, the stability of such cell lines and the level of recombinant protein produced continue to be suboptimal. Here, we used a combination of a human artificial chromosome (HAC) vector and initiation region (IR)/matrix attachment region (MAR) gene amplification method to establish stable cells that produce high levels of recombinant protein. Amplification of Enhanced green fluorescent protein (EGFP) was induced on a HAC carrying EGFP gene and IR/MAR sequences (EGFP MAR-HAC) in CHO DG44 cells. The expression level of EGFP increased approximately 6-fold compared to the original HAC without IR/MAR sequences. Additionally, anti-vascular endothelial growth factor (VEGF) antibody on a HAC (VEGF MAR-HAC) was also amplified by utilization of this IR/MAR-HAC system, and anti-VEGF antibody levels were approximately 2-fold higher compared with levels in control cells without IR/MAR. Furthermore, the expression of anti-VEGF antibody with VEGF MAR-HAC in CHO-K1 cells increased 2.3-fold compared with that of CHO DG44 cells. Taken together, the IR/MAR-HAC system facilitated amplification of a gene of interest on the HAC vector, and could be used to establish a novel cell line that stably produced protein from mammalian cells.


2019 ◽  
Vol 120 (10) ◽  
pp. 18478-18486 ◽  
Author(s):  
Yan‐Long Jia ◽  
Xiao Guo ◽  
Tian‐Jun Ni ◽  
Jiang‐Tao Lu ◽  
Xiao‐Yin Wang ◽  
...  

2019 ◽  
Vol 41 (6-7) ◽  
pp. 701-709 ◽  
Author(s):  
Yan-Long Jia ◽  
Xiao Guo ◽  
Xi-Cheng Wang ◽  
Tian-Yun Wang

2019 ◽  
Author(s):  
Todd Dowrey ◽  
Evelyn E. Schwager ◽  
Julieann Duong ◽  
Fjodor Merkuri ◽  
Yuri A. Zarate ◽  
...  

AbstractSpecial AT-rich sequence binding protein 2 (Satb2) is a matrix attachment region (MAR) binding protein. Satb2 impacts skeletal development by regulating gene transcription required for osteogenic differentiation. Although its role as a high-order transcription factor is well supported, other roles for Satb2 in skeletal development remain unclear. In particular, the impact of dosage sensitivity (heterozygous mutations) and variance on phenotypic severity is still not well understood. To further investigate molecular and cellular mechanisms of Satb2-mediated skeletal defects, we used the CRISPR/Cas9 system to generate Satb2 mutations in MC3T3-E1 cells. Our data suggest that, in addition to its role in differentiation, Satb2 regulates progenitor proliferation. We also find that mutations in Satb2 cause chromatin defects including nuclear blebbing and donut-shaped nuclei. These defects may contribute to a slight increase in apoptosis in mutant cells, but apoptosis is insufficient to explain the proliferation defects. Satb2 expression exhibits population-level variation and is mostly highly expressed from late G1 to late G2. Based on these data, we hypothesize that Satb2 may regulate proliferation through two separate mechanisms. First, Satb2 may regulate the expression of genes necessary for cell cycle progression in pre-osteoblasts. Second, similar to other MAR-binding proteins, Satb2 may participate in DNA replication. Deficiencies in either of these processes could reduce the pace of cell cycle progression and contribute to nuclear damage. We also hypothesize that Satb2-mediated proliferation defects may be buffered in some genetic backgrounds, which provides some explanation for differences in severity of skeletal defects. Further elucidation of the role of Satb2 in proliferation has potential impacts on our understanding of both skeletal defects and cancer.


Sign in / Sign up

Export Citation Format

Share Document