transformation acoustics
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Wei-Wei Kan ◽  
Qiu-Yu Li ◽  
Lei Pan

Abstract The scattering behavior of the anisotropic acoustic medium is analyzed to reveal the possibility of routing acoustic signals through the anisotropic layers with no backscattering loss. The sound-transparent effect of such medium is achieved by independently modulating the anisotropic effective acoustic parameters in a specific order, and experimentally observed in a bending waveguide by arranging the subwavelength structures in the bending part according to transformation acoustics. With the properly designed filling structures, the original distorted acoustic field in the bending waveguide is restored as if the wave travels along a straight path. The transmitted acoustic signal is maintained nearly the same as the incident modulated Gaussian pulse. The proposed schemes and the supporting results could be instructive for further acoustic manipulations such as wave steering, cloaking and beam splitting.


2021 ◽  
Vol 512 ◽  
pp. 116396
Author(s):  
Davide Enrico Quadrelli ◽  
Gabriele Cazzulani ◽  
Simone La Riviera ◽  
Francesco Braghin

2021 ◽  
Vol 104 (13) ◽  
Author(s):  
Dylan A. Kovacevich ◽  
Bogdan-Ioan Popa

2021 ◽  
Vol 149 (4) ◽  
pp. A80-A80
Author(s):  
Steven R. Craig ◽  
Jeonghun Lee ◽  
Chengzhi Shi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Cao ◽  
Fenghua Qi ◽  
Senlin Yan

AbstractTransformation acoustics, as an unconventional theory, provides a powerful tool to design various kinds of acoustic devices with excellent functionalities. However, the required ideal parameters, which are prescribed by the method, are both complex and hard to implement-even using acoustic metamaterials. Furthermore, simplified parameter materials are generally favored in transformation-acoustic design due to its easier realization with artificial structures. In this letter, we propose a coordinate transformation methodology for achieving simplified parameters by tuning the impedance distribution in the geometric limit, where the transformation media parameters can be derived by setting tunable impedance functions in the original space and a combination of suitable linear or nonlinear coordinate transformation. Based on this approach, both two-dimensional acoustic cloak and concentrators are designed with different sets of simplified parameters. Numerical simulations indicate good performance of these devices with minimized scattering at higher frequencies. The proposed method provides more opportunities to realize the designed acoustic devices experimentally, and can also be used for other transformation-acoustic designs including 3D cases.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050250
Author(s):  
Jun Cao ◽  
Fenghua Qi ◽  
Senlin Yan ◽  
Lifa Zhang

In this paper, the theory of impedance-tunable transformation acoustics in the geometric-acoustics limit is proposed to design efficient two-dimensional acoustic waveguide couplers. By choosing suitable impedance functions in the original space, impedance matching between the transformation medium and the background medium becomes possible, and the reflection at the boundary is reduced. The theory can be used to enable efficient acoustic coupling between waveguides of different sizes and different embedded media. By selecting an appropriate impedance function and a tunable acoustic refractive index, the transformed medium in the coupler can become a simplified parameter medium, for which the bulk modulus is a constant. This makes the experiment substantially easier. The problem of a reduced coupling-efficiency at low frequencies (a deviation from the geometric acoustic approximation) can be mitigated by selecting a large acoustic refractive index. Our two-dimensional numerical simulations indicate that this theoretical design works very well. The method can be extended to other transformation acoustic designs including three-dimensional cases.


2020 ◽  
Vol 19 (6-8) ◽  
pp. 294-309
Author(s):  
Giorgio Palma ◽  
Lorenzo Burghignoli

Metamaterials might be one of the breakthrough technologies needed from the aeronautic industry to achieve the more and more challenging targets set by the international authorities, especially about noise emissions. In this article, a theoretical link between Transformation Acoustics and Generalized Snell’s Law, two widely used metamaterial models, is demonstrated analytically and applied to case studies. The relevance of the connection in the aeroacoustic field is discussed along with the consequent computational advantages for numerical simulations. This is exploited to perform a simulation-based design optimization of a phase-graded metasurface acoustic lining of a 2 D duct in presence of flow. Results show promising abilities of the optimized device to modify and control the directivity of the noise emitted from the duct by means of unconventional reflections. The noise reduction in the desired direction is obtained through constructive and destructive interference, with no absorption from the boundaries.


2020 ◽  
Vol 117 (1) ◽  
pp. 011907
Author(s):  
Steven R. Craig ◽  
Jeong Hun Lee ◽  
Chengzhi Shi

2020 ◽  
Vol 34 (11) ◽  
pp. 2050111
Author(s):  
Weikai Xu ◽  
Yingchun Tang ◽  
Meng Zhang ◽  
Wuchao Qi ◽  
Wei Wang

In this study, an arbitrary shaped acoustic omnidirectional absorber (AOA) is achieved for absorbing incoming acoustic/elastic waves in the ambient environment. Using the transformation acoustics theory, we present a theoretical framework for two-dimensional acoustic path guidance around arbitrary shapes for which the material parameters in the transformed space can be obtained analytically. Results indicate that the transformed space is distorted rather than compressed; numerical simulations confirm that these absorbers exhibit a remarkably large absorption and that the proposed method can control acoustic absorption for arbitrary geometries of interest. This method can potentially be applied to sound absorption and noise control.


Sign in / Sign up

Export Citation Format

Share Document