Existing treatments for intracerebral hemorrhage (ICH) are unable to satisfactorily prevent development of secondary brain injury after ICH and multiple pathological mechanisms are involved in the development of the injury. In this study, we aimed to identify novel genes and proteins and integrated their molecular alternations to reveal key network modules involved in ICH pathology. A total of 30 C57BL/6 male mice were used for this study. The collagenase model of ICH was employed, 3 days after ICH animals were tested neurological. After it, animals were euthanized and perihematomal brain tissues were collected for transcriptome and TMT labeling-based quantitative proteome analyses. Protein-protein interaction (PPI) network, Gene Set Enrichment Analysis (GSEA), and regularized Canonical Correlation Analysis (rCCA) were performed to integrated multiomics data. For validation of hub genes and proteins, qRT-PCR and Western blot were carried out. The candidate biomarkers were further measured by ELISA in the plasma of ICH patients and the controls. A total of 2218 differentially expressed genes (DEGs) and 353 differentially expressed proteins (DEPs) between the ICH model group and control group were identified. GSEA revealed that immune-related gene sets were prominently upregulated and significantly enriched in pathways of inflammasome complex, negative regulation of interleukin-12 production, and pyroptosis during the ICH process. The rCCA network presented two highly connective clusters which were involved in the sphingolipid catabolic process and inflammatory response. Among ten hub genes screened out by integrative analysis, significantly upregulated Itgb2, Serpina3n, and Ctss were validated in the ICH group by qRT-PCR and Western blot. Plasma levels of human SERPINA3 (homologue of murine Serpina3n) were elevated in ICH patients compared with the healthy controls (SERPINA3: 13.3 ng/mL vs. 11.2 ng/mL,
p
=
0.015
). Within the ICH group, higher plasma SERPINA3 levels with a predictive threshold of 14.31 ng/mL (
sensitivity
=
64.3
%
;
specificity
=
80.8
%
;
AUC
=
0.742
, 95% CI: 0.567-0.916) were highly associated with poor outcome (mRS scores 4-6). Taken together, the results of our study exhibited molecular changes related to ICH-induced brain injury by multidimensional analysis and effectively identified three biomarker candidates in a mouse ICH model, as well as pointed out that Serpina3n/SERPINA3 was a potential biomarker associated with poor functional outcome in ICH patients.