reaction center
Recently Published Documents


TOTAL DOCUMENTS

2278
(FIVE YEARS 136)

H-INDEX

104
(FIVE YEARS 7)

Planta ◽  
2022 ◽  
Vol 255 (2) ◽  
Author(s):  
Alexander G. Ivanov ◽  
Marianna Krol ◽  
Leonid V. Savitch ◽  
Beth Szyszka-Mroz ◽  
Jessica Roche ◽  
...  

2022 ◽  
Author(s):  
Iryna O. Borysenko ◽  
Sergiy I. Okovytyy ◽  
Jerzy Leszczynski

Abstract The algorithm for generating and estimating the probability of possible reaction pathways for multichannel bimolecular interactions was used to predict the reaction products in the reagent ratio of 1:1 and 1:2. Here we have considered the possible reaction pathways of the reaction of amine ((1S,2S,4S)-bicyclo[2.2.1]hept-5-en-2-ylmethanamine (1) with epoxides (2-((cyclohexyloxy)methyl)oxirane (2), 2-(phenoxymethyl)oxirane (3), (N-(oxiran-2-ylmethyl)-N-phenylbenzenesulfonamide 8) in order to explain experimental observed data, which indicate differences in the reactivity of glycidyl ethers and glycidylsulfonamide with framework amines. Based on the proposed algorithm [39], we have investigated the reaction in the reagent ratio of 1:1 and 1: 2. Calculated values of activation barriers indicate a low probability of formation of interaction products of amine (1) with epoxide (8) with a (1:2) reagent ratio due to steric hindrances in the reaction center.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Veronica R. Policht ◽  
Andrew Niedringhaus ◽  
Rhiannon Willow ◽  
Philip D. Laible ◽  
David F. Bocian ◽  
...  

2022 ◽  
pp. 41-60
Author(s):  
Rahul Prasad Singh ◽  
Sandeep Kumar Singh ◽  
Ajay Kumar ◽  
Arpan Modi ◽  
Mukesh Kumar Yadav ◽  
...  

Author(s):  
Eleonora Alfinito ◽  
Lino Reggiani

Featured Application: Bio-electronic devices take advantages of some specific duties of biological matter. The specific ability of some proteins to use sunlight is considered for the realization of photo-electronic devices . Here the focus is on the role of the pH, whose variations seem to affect the protein conductance


Small ◽  
2021 ◽  
pp. 2104366
Author(s):  
Manuel López‐Ortiz ◽  
Ricardo A. Zamora ◽  
Marina Inés Giannotti ◽  
Chen Hu ◽  
Roberta Croce ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260086
Author(s):  
Xin Ran ◽  
Xiao Wang ◽  
Xiaokuan Gao ◽  
Haiyong Liang ◽  
Bingxiang Liu ◽  
...  

Objective The purpose of this study was to explore the adaptive mechanism underlying the photosynthetic characteristics and the ion absorption and distribution of white willow (Salix alba L.) in a salt stress environment in cutting seedlings. The results lay a foundation for further understanding the distribution of sodium chloride and its effect on the photosynthetic system. Method A salt stress environment was simulated in a hydroponics system with different NaCl concentrations in one-year-old Salix alba L.branches as the test materials. Their growth, ion absorption, transport and distribution in the roots and leaves, and the changes in the photosynthetic fluorescence parameters were studied after 20 days under hydroponics. Results The results show that The germination and elongation of roots are promoted in the presence of 171mM NaCl, but root growth is comprehensively inhibited under increasing salt stress. Under salt stress, Na+ accumulates significantly in the roots and leaves, and the Na+ content and the Na+/K+ and Na+/Ca2+ root ratios are significantly greater than those in the leaves. When the NaCl concentration is ≤ 342mM, Salix alba can maintain relatively stable K+ and Ca2+ contents in its leaves by improving the selective absorption and accumulation of K+ and Ca2+ and adjusting the transport capacity of mineral ions to aboveground parts, while K+ and Ca2+ levels are clearly decreased under high salt stress. With increasing salt concentrations, the net photosynthetic rate (Pn), transpiration rate (E) and stomatal conductance (gs) of leaves decrease gradually overall, and the intercellular CO2 concentration (Ci) first decreases and then increases. When the NaCl concentration is < 342mM, the decrease in leaf Pn is primarily restricted by the stomata. When the NaCl concentration is > 342mM, the decrease in the Pn is largely inhibited by non-stomatal factors. Due to the salt stress environment, the OJIP curve (Rapid chlorophyll fluorescence) of Salix alba turns into an OKJIP curve. When the NaCl concentration is > 171mM, the fluorescence values of points I and P decrease significantly, which is accompanied by a clear inflection point (K). The quantum yield and energy distribution ratio of the PSⅡ reaction center change significantly (φPo, Ψo and φEo show an overall downward trend while φDo is promoted). The performance index and driving force (PIABS, PICSm and DFCSm) decrease significantly when the NaCl concentration is > 171mM, indicating that salt stress causes a partial inactivation of the PSII reaction center, and the functions of the donor side and the recipient side are damaged. Conclusion The above results indicate that Salix alba can respond to salt stress by intercepting Na+ in the roots, improving the selective absorption of K+ and Ca2+ and the transport capacity to the above ground parts of the plant, and increasing φDo, thus shows an ability to self-regulate and adapt.


2021 ◽  
Author(s):  
Nathan Ennist ◽  
Zhenyu Zhao ◽  
Steven Stayrook ◽  
Bohdana Discher ◽  
P Leslie 'Les' Dutton ◽  
...  

Abstract Natural photosynthetic protein complexes capture sunlight to power the energetic catalysis that supports life on Earth. Yet these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts and obfuscates the underlying design rules for light-driven charge separation. De novo development of a simplified photosynthetic reaction center protein can clarify practical engineering principles needed to build new enzymes for efficient solar-to-fuel energy conversion. Here we report the rational design, X-ray crystal structure, and electron transfer activity of a multi-cofactor protein that incorporates essential elements of photosynthetic reaction centers. This highly stable, modular artificial protein framework can be reconstituted in vitro with interchangeable redox centers for nanometer-scale photochemical charge separation. Transient absorption spectroscopy demonstrates Photosystem II-like tyrosine and metal cluster oxidation, and we measure charge separation lifetimes exceeding 100 ms, ideal for light-activated catalysis. This de novo-designed reaction center builds upon engineering guidelines established for charge separation in earlier synthetic photochemical triads and modified natural proteins, and it shows how synthetic biology may lead to a new generation of genetically encoded, light-powered catalysts for solar fuel production.


Sign in / Sign up

Export Citation Format

Share Document