AbstractBackgroundSex-biased gene expression, particularly male-biased expression in the gonad, has often been linked to rapid protein sequence evolution (dN/dS) in animals. This evolutionary trend may arise from one or both of sexual selection pressures during mating or low pleiotropy. In insects, research on sex-biased transcription and dN/dS remains largely focused on a few holometabolous species, with variable findings on male and female gonadal effects. The brain is central to the mating process, and provides neurological foundation for mating behaviors, such as courtship, intrasex competition and mate choice. However, there is a striking paucity of research on sex-biased expression of genes in the brain and the rate of protein sequence evolution in such genes.ResultsHere, we studied sex-biased gene expression in a hemimetabolous insect, the cricket Gryllus bimaculatus. We generated novel RNA-seq data for two sexual tissue types, the gonad and somatic reproductive system, and for two core components of the nervous system, the brain and ventral nerve cord. From a genome-wide analysis of genes expressed in these tissues, we report the accelerated evolution of testis-biased genes and seminal fluid proteins (SFPs) genes, as compared to ovary-biased and unbiased genes in this cricket model, which includes an elevated frequency of positive selection events. With respect to the brain, while sex-biased brain genes were much less common than for the gonads, they exhibited exceptionally rapid evolution, an effect that was stronger for the female than for the male brain. Certain sex-biased brain genes were predicted to be involved in mating or sex-related functions, which we suggest may cause exposure to sexual selection. Moreover, the sex-biased brain genes exhibited remarkably low cross-tissue expression breadth, or pleiotropy. We speculate that this feature may permit relaxed purifying selection, and allow the freedom for adaptive protein functional changes in these brain-expressed genes.ConclusionsOur results demonstrate that sex-biased expression in the male gonad, and sex-biased gene expression in the brain, especially the female brain, are associated with rapid protein sequence evolution in a cricket model system. We discuss the results with respect to our findings on pleiotropy and positive selection, and consider the potential role of the dynamic mating biology of this cricket model in shaping these patterns.