metalloproteinase activity
Recently Published Documents


TOTAL DOCUMENTS

496
(FIVE YEARS 35)

H-INDEX

64
(FIVE YEARS 2)

Author(s):  
Chang Shu ◽  
Xinyu Zheng ◽  
Yang Wang ◽  
Yi Xu ◽  
Denghui Zhang ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3415
Author(s):  
Sílvia Parés ◽  
Olivia Cano-Garrido ◽  
Alex Bach ◽  
Neus Ferrer-Miralles ◽  
Antonio Villaverde ◽  
...  

The dry period is decisive for the milking performance of dairy cows. The promptness of mammary gland involution at dry-off affects not only the productivity in the next lactation, but also the risk of new intra-mammary infections since it is closely related with the activity of the immune system. Matrix metalloproteinase-9 (MMP-9) is an enzyme present in the mammary gland and has an active role during involution by disrupting the extracellular matrix, mediating cell survival and the recruitment of immune cells. The objective of this study was to determine the potential of exogenous administration of a soluble and recombinant version of a truncated MMP-9 (rtMMP-9) to accelerate mammary involution and boost the immune system at dry-off, avoiding the use of antibiotics. Twelve Holstein cows were dried abruptly, and two quarters of each cow received an intra-mammary infusion of either soluble rtMMP-9 or a positive control based on immunostimulant inclusion bodies (IBs). The contralateral quarters were infused with saline solution as negative control. Samples of mammary secretion were collected during the week following dry-off to determine SCC, metalloproteinase activity, bovine serum albumin, lactoferrin, sodium, and potassium concentrations. The soluble form of rtMMP-9 increased endogenous metalloproteinase activity in the mammary gland compared with saline quarters but did not accelerate either the immune response or involution in comparison with control quarters. The results demonstrated that the strategy to increase the mammary gland immunocompetence by recombinant infusion of rtMMP-9 was unsuccessful.


2021 ◽  
Vol 22 (23) ◽  
pp. 12672
Author(s):  
Rongfeng Li ◽  
Huahua Yu ◽  
Aoyu Li ◽  
Chunlin Yu ◽  
Pengcheng Li

Jellyfish stings threaten people’s health and even life in coastal areas worldwide. Nemopilema nomurai is one of the most dangerous jellyfish in the East Asian Marginal Seas, which not only stings hundreds of thousands of people every year but also is assumed to be responsible for most deaths by jellyfish stings in China. However, there is no effective first-aid drug, such as antivenoms, for the treatment of severe stings by N. nomurai to date. In this study, we prepared a N. nomurai antiserum from rabbits using inactivated N. nomurai toxins (NnTXs) and isolated the IgG type of antivenom (IgG-AntiNnTXs) from the antiserum. Subsequently, IgG-AntiNnTXs were refined with multiple optimizations to remove Fc fragments. Finally, the F(ab’)2 type of antivenom (F(ab’)2-AntiNnTXs) was purified using Superdex 200 and protein A columns. The neutralization efficacy of both types of antivenom was analyzed in vitro and in vivo, and the results showed that both IgG and F(ab’)2 types of antivenom have some neutralization effect on the metalloproteinase activity of NnTXs in vitro and could also decrease the mortality of mice in the first 4 h after injection. This study provides some useful information for the development of an effective antivenom for N. nomurai stings in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Agnieszka Gęgotek ◽  
Sinemyiz Atalay ◽  
Adam Wroński ◽  
Agnieszka Markowska ◽  
Elżbieta Skrzydlewska

The development of psoriasis is associated with the consequences of oxidative stress and inflammation leading to metabolic changes locally, in the skin cells, and systemically, in the blood. Therefore, the aim of this study was to analyze the effect of psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) on the basal plasma/keratinocyte levels of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and angiogenesis factors, as well as to evaluate the effect of CBD on these parameters in keratinocytes isolated from psoriatic/healthy individuals with and without in vitro irradiation by UVB. A quantitative chemiluminescent method of detection based on an ELISA protocol and zymography technique was used during analysis. It was shown that activity levels of MMP-9 and TIMP-2 in PsA plasma were higher than in PsV. Changes in the proteolytic activity were accompanied by an increase in markers of angiogenesis (angiopoietin-2, HGF, VEGF, TNFα, PDGF, FGF), where in the specific case of angiopoietin-2 and TNFα, the overexpression in PsV was significantly stronger than in PsA. CBD application to keratinocytes partially restored levels of MMP-1/2/3/7 and TIMP-1/2 (in an effect which was particularly enhanced by UVB irradiation), as well as levels of the examined angiogenic factors except TNFα (levels of which were increased in psoriatic keratinocytes and decreased in healthy keratinocytes). Presented results indicate that CBD may be suggested as an antiangiogenic factor that reduces the proinflammatory action of UVB in psoriatic keratinocytes and partially has a protective effect for healthy keratinocytes.


2021 ◽  
Vol 178 ◽  
pp. 113010
Author(s):  
Qiong Hu ◽  
Luofeng Su ◽  
Yan Mao ◽  
Shiyu Gan ◽  
Yu Bao ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Yang Yue ◽  
Huahua Yu ◽  
Rongfeng Li ◽  
Pengcheng Li

Scyphozoan envenomation is featured as severe cutaneous damages due to the toxic effects of venom components released by the stinging nematocysts of a scyphozoan. However, the oedematogenic property and mechanism of scyphozoan venoms remain uninvestigated. Here, we present the oedematogenic properties of the nematocyst venom from Nemopilema nomurai (NnNV), a giant stinging scyphozoan in China, for the first time, using in vivo and in vitro models with class-specific inhibitors. NnNV was able to induce remarkable oedematogenic effects, including induction of significant oedema in the footpad and thigh of mouse, and increase in vascular permeability in the dorsal skin and kidney. Moreover, batimastat, a specific metalloproteinase inhibitor, could significantly reduce the Evan’s blue leakage in the damaged organs and attenuate paw oedema after 12 h, but exerted no influence on NnNV-induced thigh oedema. These observations suggested a considerable contribution of NnNV metalloproteinase-like components to the increased vasopermeability, and the participation was strongly suggested to be mediated by destroying the integrity of the vascular basement membrane. Moreover, partial isolation combined LC-MS/MS profiling led to identification of the protein species Nn65 with remarkable metalloproteinase activity. This study contributes to the understanding of the effector components underlying the cutaneous damages induced by scyphozoan stings.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Du Hyeon Hwang ◽  
Hyunkyoung Lee ◽  
Indu Choudhary ◽  
Changkeun Kang ◽  
Jinho Chae ◽  
...  

Abstract Jellyfish stingings are currently raising serious public health concerns around the world. Hence, the search for an effective first aid reagent for the envenomation has been the goal of many investigators in the field. There have been a few previous reports of in vivo as well as in vivo studies suggesting the metalloproteinase activity of scyphozoan jellyfish venom, such as N. nomurai venom (NnV), plays a major role in the pathogenesis. These results have inspired us to develop a metalloproteinase inhibitor as a candidate for the treatment of Scyphozoan jellyfish envenomation. It has been previously demonstrated that the major polyphenol component in green tea, epigallocatechin-3-gallate (EGCG), can inhibit metalloproteinase activity of snake venoms. In fact, plant polyphenols as potential therapeutics have been shown to exert positive effects on neutralizing snake venoms and toxins. In the present study, we found that EGCG significantly inhibits the toxic proteases of NnV in a concentration-dependent manner. Human keratinocyte (HaCaT) and Human dermal fibroblast (HDF) cell culture studies showed that EGCG treatment can protect the cells from NnV-induced cytotoxicity which has been accompanied by the down-regulation of human matrix metalloproteinase (MMP)-2 and -9. Simulated rat NnV envenomation study disclosed that topical treatments with EGCG considerably ameliorated the progression of the dermonecrotic lesions caused by NnV. EGCG also reduced the activitions of tissue MMP-2 and MMP-9, which seem to be crucial players in the dermal toxic responses induced by NnV. Therefore, we propose that EGCG might be an effective therapeutic agent for the treatment of cutaneoous jellyfish symptoms.


2020 ◽  
Vol 6 (37) ◽  
pp. eabb5069
Author(s):  
Daniel L. Matera ◽  
Katarina M. DiLillo ◽  
Makenzee R. Smith ◽  
Christopher D. Davidson ◽  
Ritika Parikh ◽  
...  

Fibrosis, characterized by aberrant tissue scarring from activated myofibroblasts, is often untreatable. Although the extracellular matrix becomes increasingly stiff and fibrous during disease progression, how these physical cues affect myofibroblast differentiation in 3D is poorly understood. Here, we describe a multicomponent hydrogel that recapitulates the 3D fibrous structure of interstitial tissue regions where idiopathic pulmonary fibrosis (IPF) initiates. In contrast to findings on 2D hydrogels, myofibroblast differentiation in 3D was inversely correlated with hydrogel stiffness but positively correlated with matrix fibers. Using a multistep bioinformatics analysis of IPF patient transcriptomes and in vitro pharmacologic screening, we identify matrix metalloproteinase activity to be essential for 3D but not 2D myofibroblast differentiation. Given our observation that compliant degradable 3D matrices amply support fibrogenesis, these studies demonstrate a departure from the established relationship between stiffness and myofibroblast differentiation in 2D, and provide a new 3D model for studying fibrosis and identifying antifibrotic therapeutics.


Sign in / Sign up

Export Citation Format

Share Document