product compound
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Wei Hu ◽  
Chao Mao ◽  
Weibin Sheng

Abstract Background: Osteoarthritis (OA) is a chronic degenerative disease, its main characteristic involves articular cartilage destruction and inflammation response, absent of effective medical treatment. Our current research aimed to explore anti-inflammatory effect of kirenol, a diterpenoid natural product compound, in the development of OA and its potential molecular mechanism through in vitro and in vivo study.Methods: In vitro, chondrocytes were pretreated with kirenol for 2 h before IL-1β stimulation. Production of NO, PGE2, TNF-α, IL-6, aggrecan, collagen-II, MMP13and ADAMTS5 were evaluated by the Griess reaction and ELISAs. The mRNA (aggrecan and collagen-II) and protein expression (COX-2, iNOS, P65, IκB, PI3K, AKT) were measured by qRT-PCR and Western blot respectively. Immunofluorescence was used to assess the expression of collagen-II and P65. The in vivo effect of kirenol was evaluated in mice OA models induced by destabilization of the medial meniscus (DMM).Results: We found that kirenol inhibited IL-1β-induced expression of NO, PGE2, TNF-α, IL-6, COX-2, iNOS, ADAMTS-5. Besides, kirenol remarkably decreased IL-1β-induced degradation of aggrecan and collagen-II. Furthermore, kirenol significantly inhibited IL-1β-induced phosphorylation of PI3K/Akt and NF-κB signaling. In vivo, the cartilage in kirenol-treated mice exhibited less cartilage degradation and lower OARSI scores.Conclusions: Taken together, the results of this study provide potent evidence that kirenol could be utilized as a potentially therapeutic agent in prevention and treatment of OA.


2021 ◽  
Author(s):  
◽  
Lauren Taylor

<p><b>Morphological cell profiling (MCP) is an assay which quantifies the morphology of cells and cellular components. Changes in the morphology of cells following compound treatment has been shown to assess the bioactivity, and even propose a target of said compound. It is a powerful assay that can be used to assess novel compounds for drug candidature. However, it is currently not transferable between institutions. Thus, this project evaluated the feasibility of establishing an MCP assay at Victoria University of Wellington - Te Herenga Waka to assess the bioactivity of novel natural products from the natural products laboratory.</b></p> <p>First, a new individualistic approach to select compound concentration for MCP was assessed by flow cytometry with six exemplary drugs. Results concluded this flow cytometry approach can realise an ideal concentration for individual compounds in which the compound treatment was bioactive but not cytotoxic. This approach provides more biologically relevant and accurate information about a compound's bioactivity than previous MCP methods.</p> <p>Second, the feasibility of establishing the assay was assessed by testing the same six drugs through protocol common to MCP assays. Various stains and microscopes were tested for suitability for an MCP; image quantitative software CellProfiler was evaluated for MCP analysis ease; and quality control protocol was attempted. Ultimately, an MCP is currently not feasible at Te Herenga Waka as multiple components to establish the assay are too difficult and time intensive to complete.</p> <p>Third, discorhabdin E, a pyrroloiminoquinone alkaloid, was isolated from the New Zealand marine sponge, Latrunculia kaakaariki. The compound was tested as if it were a novel natural product compound through the new flow cytometry concentration selection protocol to test its effectivity, and was subsequently assessed by morphological analysis.</p>


2021 ◽  
Author(s):  
◽  
Lauren Taylor

<p><b>Morphological cell profiling (MCP) is an assay which quantifies the morphology of cells and cellular components. Changes in the morphology of cells following compound treatment has been shown to assess the bioactivity, and even propose a target of said compound. It is a powerful assay that can be used to assess novel compounds for drug candidature. However, it is currently not transferable between institutions. Thus, this project evaluated the feasibility of establishing an MCP assay at Victoria University of Wellington - Te Herenga Waka to assess the bioactivity of novel natural products from the natural products laboratory.</b></p> <p>First, a new individualistic approach to select compound concentration for MCP was assessed by flow cytometry with six exemplary drugs. Results concluded this flow cytometry approach can realise an ideal concentration for individual compounds in which the compound treatment was bioactive but not cytotoxic. This approach provides more biologically relevant and accurate information about a compound's bioactivity than previous MCP methods.</p> <p>Second, the feasibility of establishing the assay was assessed by testing the same six drugs through protocol common to MCP assays. Various stains and microscopes were tested for suitability for an MCP; image quantitative software CellProfiler was evaluated for MCP analysis ease; and quality control protocol was attempted. Ultimately, an MCP is currently not feasible at Te Herenga Waka as multiple components to establish the assay are too difficult and time intensive to complete.</p> <p>Third, discorhabdin E, a pyrroloiminoquinone alkaloid, was isolated from the New Zealand marine sponge, Latrunculia kaakaariki. The compound was tested as if it were a novel natural product compound through the new flow cytometry concentration selection protocol to test its effectivity, and was subsequently assessed by morphological analysis.</p>


2021 ◽  
pp. 101362
Author(s):  
Dene R. Littler ◽  
Miaomiao Liu ◽  
Julie L. McAuley ◽  
Shea A. Lowery ◽  
Patricia T. Illing ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 19-24
Author(s):  
Rashidi Othman ◽  
Razanah Ramya ◽  
Muhammad Azzubair Azeman ◽  
Norazian Mohd. Hassan   ◽  
Suhair Kamoona

Carotenoids are a class of natural product compound that are currently being used as colouring agents and widely used in food industry. Carotenoids are bioactive pigments obtained mainly from plants through dietary intake. They possess good features in terms of dietary supplement, food colourant, and polymer stabiliser. The presence of 4 main carotenoids, which are ?-carotene, zeaxanthin, lutein, and violaxanthin, were determined in 4 classes of allelopathic plant groups namely trees, ferns, grasses and herbaceous plants. This research aims to explore the carotenoid’s content and composition in 11 allelopathic species by HPLC analysis. A. auriculiformis (tree) was found to have the highest total carotenoid concentration (146.36 µg/g DW) that was substantially higher than all other species tested whereas the lowest total carotenoid concentration was found in S. palustris (fern) (3.76 µg/g DW). Lutein and ?-carotene were detected highest in A. auriculiformis (tree), with 1024 ± 25.5 µg/g DW and 37.55 ± 3.16 µg/g DW, respectively. Violaxanthin and zeaxanthin were found substantially highest in M. cajuputi (tree) (5.02 ± 0.5 µg/g DW) and S. palustris (fern) (5.88 ± 0.19µg/g DW), respectively.


2020 ◽  
Vol 11 (33) ◽  
pp. 8771-8778 ◽  
Author(s):  
Hong Jiang ◽  
Yu-Ting Qi ◽  
Wen-Tao Wu ◽  
Ming-Yong Wen ◽  
Yan-Ling Liu ◽  
...  

A single nanowire NADH sensor with excellent electrochemical and antifouling performance is fabricated, and glucose- and resveratrol (a natural product compound)-induced NADH release from intracellular mitochondria is successfully investigated.


2018 ◽  
Vol 20 (1) ◽  
pp. 87-95
Author(s):  
Joanna Liszkowska ◽  
Bogusław Czupryński ◽  
Joanna Paciorek-Sadowska ◽  
Marcin Borowicz

Abstract A poly(hydroxybutyl citrate) p(HBC) was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR). The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC) from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams) and with Solkane 365/227 (S foams). The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01).


Sign in / Sign up

Export Citation Format

Share Document