transcriptome level
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 59)

H-INDEX

12
(FIVE YEARS 3)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yanrong Zhang ◽  
Fuchao Jiao ◽  
Jun Li ◽  
Yuhe Pei ◽  
Meiai Zhao ◽  
...  

Abstract Backgrounds Grain size is a key factor in crop yield that gradually develops after pollination. However, few studies have reported gene expression patterns in maize grain development using large-grain mutants. To investigate the developmental mechanisms of grain size, we analyzed a large-grain mutant, named tc19, at the morphological and transcriptome level at five stages corresponding to days after pollination (DAP). Results After maturation, the grain length, width, and thickness in tc19 were greater than that in Chang7-2 (control) and increased by 3.57, 8.80, and 3.88%, respectively. Further analysis showed that grain width and 100-kernel weight in tc19 was lower than in Chang7-2 at 14 and 21 DAP, but greater than that in Chang7-2 at 28 DAP, indicating that 21 to 28 DAP was the critical stage for kernel width and weight development. For all five stages, the concentrations of auxin and brassinosteroids were significantly higher in tc19 than in Chang7-2. Gibberellin was higher at 7, 14, and 21 DAP, and cytokinin was higher at 21 and 35 DAP, in tc19 than in Chang7-2. Through transcriptome analysis at 14, 21, and 28 DAP, we identified 2987, 2647 and 3209 differentially expressed genes (DEGs) between tc19 and Chang7-2. By using KEGG analysis, 556, 500 and 633 DEGs at 14, 21 and 28 DAP were pathway annotated, respectively, 77 of them are related to plant hormone signal transduction pathway. ARF3, AO2, DWF4 and XTH are higher expressed in tc19 than that in Chang7-2. Conclusions We found some DEGs in maize grain development by using Chang7-2 and a large-grain mutant tc19. These DEGs have potential application value in improving maize performance.


2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Andrey Rumyantsev ◽  
Anton Sidorin ◽  
Artemii Volkov ◽  
Ousama Al Shanaa ◽  
Elena Sambuk ◽  
...  

Komagataella phaffii yeast is one of the most important biocompounds producing microorganisms in modern biotechnology. Optimization of media recipes and cultivation strategies is key to successful synthesis of recombinant proteins. The complex effects of proline on gene expression in the yeast K. phaffii was analyzed on the transcriptome level in this work. Our analysis revealed drastic changes in gene expression when K. phaffii was grown in proline-containing media in comparison to ammonium sulphate-containing media. Around 18.9% of all protein-encoding genes were differentially expressed in the experimental conditions. Proline is catabolized by K. phaffii even in the presence of other nitrogen, carbon and energy sources. This results in the repression of genes involved in the utilization of other element sources, namely methanol. We also found that the repression of AOX1 gene promoter with proline can be partially reversed by the deletion of the KpPUT4.2 gene.


Author(s):  
Bassam Abomoelak ◽  
Samani U. Pragya ◽  
Anthony J. Griswold ◽  
Neelam Mehta ◽  
Parvin Uddin ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Filippos Bantis ◽  
George Tsiolas ◽  
Evangelia Mouchtaropoulou ◽  
Ioanna Tsompanoglou ◽  
Alexios N. Polidoros ◽  
...  

Watermelon (Citrullus lanatus) is a valuable horticultural crop with nutritional benefits grown worldwide. It is almost exclusively cultivated as grafted scions onto interspecific squash rootstock (Cucurbita maxima × Cucurbita moschata) to improve the growth and yield and to address the problems of soilborne diseases and abiotic stress factors. This study aimed to examine the effect of grafting (homo- and hetero-grafting) on the transcriptome level of the seedlings. Therefore, we compared homo-grafted watermelon (WW) with non-grafted watermelon control (W), homo-grafted squash (SS) with non-grafted squash control (S), hetero-grafted watermelon onto squash (WS) with SS, and WS with WW. Different numbers of differentially expressed genes (DEGs) were identified in each comparison. In total, 318 significant DEGs were detected between the transcriptomes of hetero-grafts and homo-grafts at 16 h after grafting. Overall, a significantly higher number of downregulated transcripts was detected among the DEGs. Only one gene showing increased expression related to the cytokinin synthesis was common in three out of four comparisons involving WS, SS, and S. The highest number of differentially expressed (DE) transcripts (433) was detected in the comparison between SS and S, followed by the 127 transcripts between WW and W. The study provides a description of the transcriptomic nature of homo- and hetero-grafted early responses, while the results provide a start point for the elucidation of the molecular mechanisms and candidate genes for the functional analyses of hetero-graft and homo-graft systems in Cucurbitaceae and generally in the plants.


2021 ◽  
Author(s):  
Mahnaz Nezamivand-Chegini ◽  
Hamed Kharrati-Koopaee ◽  
seyed taghi Heydari ◽  
Hasan Giahi ◽  
Ali Dehshahri ◽  
...  

Abstract Background Breast cancer is one of the most important causes of mortality in the world, and Tamoxifen therapy is known as a medication strategy for estrogen receptor-positive breast cancer. In current study, two hypotheses of Tamoxifen consumption in breast cancer cell line (MCF7) were investigated. First, the effect of Tamoxifen on genes expression profile at transcriptome level was evaluated between the control and treated samples. Second, due to the fact that Tamoxifen is known as a mutagenic factor, there may be an association between the alterations of genetic variants and Tamoxifen treatment, which can impact on the drug response. Methods In current study, the whole-transcriptome (RNA-seq) dataset of four investigations (19 samples) were derived from European Bioinformatics Institute (EBI). At transcriptome level, the effect of Tamoxifen was investigated on gene expression profile between control and treatment samples. Moreover, Tamoxifen is known as a mutagenic factor, therefore, its contribution to alterations of genetic variants and drug response were examined. Results Results achieved from RNA-seq analysis indicated the contribution of several candidate genes to tumor suppression process and consequently, the achievement of an effective treatment. For instance, XIAP-associated factor 1 (XAF1) was reported as an up-regulated gene under Tamoxifen therapy. XAF1 is a tumor suppressor that contributes to the apoptosis induction and tumor growth inhibition along with TP53. Results of gene ontology enrichment analysis of differential gene expressions indicated that most of them could considerably lead to the cell death, apoptosis, and negative regulation of proteolysis process. Findings achieved from evaluating Tamoxifen mutagenicity effect on drug response was not confirmed perfectly. The most reported candidate genes, which were related to differential genetic variants between control and treated samples, played the oncogene and tumor suppressor dual roles and also their exact roles in breast cancer were not investigated precisely. Conclusion At transcriptome level, Tamoxifen consumption in MCF7 cell line could be associated with candidate genes and biological pathways that contribute to the apoptosis, proteolysis, and tumor suppression. The mutagenicity effect of Tamoxifen and its contribution to drug response was not confirmed perfectly.


2021 ◽  
Author(s):  
Si-Yu Zhang ◽  
Xiao Xiao ◽  
Song-Can Chen ◽  
Yong-Guan Zhu ◽  
Konstantinos T. Konstantinidis

Abstract Arsenic (As) metabolism genes are generally present in soils but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes (ars) including arsR, acr3, arsB, arsC, arsM, arsI, arsP, and arsH as well as energy-generating As respiratory oxidation (aioA) and reduction (arrA) genes. Somewhat unexpectedly, the relative DNA abundances and diversity of ars, aioA, and arrA genes were not significantly different between low and high (~10 vs ~100 mg kg-1) As soils. By comparison to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars genes abundance only when its concentration was higher than 410 mg kg-1. In contrast, between low and high As soils, metatranscriptomics revealed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, the dominant As species in paddy soils, but not arrA genes, which are induced by arsenate. These patterns appeared to be community-wide as opposed to taxon-specific. Collectively, our findings advance understanding of how microbes respond to high As levels and the diversity of As metabolism genes in paddy soils and indicated that future studies of As metabolism in soil, or other environments, should include the function (transcriptome) level. IMPORTANCEArsenic (As) is a toxic metalloid pervasively present in the environment. Microorganisms have evolved the capacity to metabolize As, and As metabolism genes are ubiquitously present in the environment even in the absence of high concentrations of As. However, these previous studies were carried out at the DNA level and thus, the activity of the As metabolism genes detected remains essentially speculative. Here, we show that the high As levels in paddy soils increased the transcriptional activity rather than the relative DNA abundance and diversity of As metabolism genes. These findings advance our understanding of how microbes respond to and cope with high As levels and have implications for better monitoring and managing an important toxic metalloid in agricultural soils and possibly other ecosystems.


Author(s):  
Si-Yu Zhang ◽  
Xiao Xiao ◽  
Song-Can Chen ◽  
Yong-Guan Zhu ◽  
Guo-Xin Sun ◽  
...  

Arsenic (As) metabolism genes are generally present in soils but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes ( ars ) including arsR , acr3 , arsB , arsC , arsM , arsI , arsP , and arsH as well as energy-generating As respiratory oxidation ( aioA ) and reduction ( arrA ) genes. Somewhat unexpectedly, the relative DNA abundances and diversity of ars , aioA , and arrA genes were not significantly different between low and high (∼10 vs ∼100 mg kg −1 ) As soils. By comparison to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars genes abundance only when its concentration was higher than 410 mg kg −1 . In contrast, between low and high As soils, metatranscriptomics revealed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, the dominant As species in paddy soils, but not arrA genes, which are induced by arsenate. These patterns appeared to be community-wide as opposed to taxon-specific. Collectively, our findings advance understanding of how microbes respond to high As levels and the diversity of As metabolism genes in paddy soils and indicated that future studies of As metabolism in soil, or other environments, should include the function (transcriptome) level. IMPORTANCE Arsenic (As) is a toxic metalloid pervasively present in the environment. Microorganisms have evolved the capacity to metabolize As, and As metabolism genes are ubiquitously present in the environment even in the absence of high concentrations of As. However, these previous studies were carried out at the DNA level and thus, the activity of the As metabolism genes detected remains essentially speculative. Here, we show that the high As levels in paddy soils increased the transcriptional activity rather than the relative DNA abundance and diversity of As metabolism genes. These findings advance our understanding of how microbes respond to and cope with high As levels and have implications for better monitoring and managing an important toxic metalloid in agricultural soils and possibly other ecosystems.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 997
Author(s):  
Chun Liu ◽  
Jie Ma ◽  
Defeng Zhang ◽  
Wei Li ◽  
Biao Jiang ◽  
...  

Aeromonas schubertii is the etiological pathogen of internal organ nodules in snakehead fish. Infections with A. schubertii produce a significant economic loss in aquaculture. Therefore, it is important to examine the immune mechanisms by which snakeheads defend against A. schubertii infection. In this study, we established a hybrid snakehead infection model by intraperitoneal injection of A. schubertii that produced internal organ nodules. The splenic immune response of infected fish was examined at the transcriptome level by Illumina-seq analysis. Results showed 14,796 differentially expressed genes (DEGs) following A. schubertii infection, including 4441 up-regulated unigenes and 10,355 down-regulated unigenes. KEGG analysis showed 2084 DEGs to be involved in 192 pathways, 14 of which were immune-related. Twelve DEGs were used to validate quantitative real-time PCR results with RNA-seq data. Time-course expression analysis of six genes demonstrated modulation of the snakehead immune response by A. schubertii. Furthermore, transcriptome analysis identified a substantial number of DEGs that were involved in the apoptosis signaling pathway. TUNEL analysis of infected spleens confirmed the presence of apoptotic cells. This study provided new information for a further understanding of the pathogenesis of A. schubertii in snakeheads, which can be used to prevent and possibly treat A. schubertii infections.


Author(s):  
Qi Cheng ◽  
Mo Chen ◽  
Xin Chen ◽  
Xiaochan Chen ◽  
Huawei Jiang ◽  
...  

ObjectiveThe multisystem involvement and high heterogeneity of systemic lupus erythematosus (SLE) lead to great challenges in its diagnosis and treatment. The purpose of this study was to find new lncRNAs in peripheral blood mononuclear cells of SLE patients by transcriptome sequencing and explore their potential as biomarkers and their correlation with clinical features.Materials and MethodsTranscriptome sequencing was used to screen differentially expressed lncRNAs (DELs) and mRNAs (DEMs). The expression of these selected lncRNAs and mRNAs in SLE patients and healthy controls was verified by qPCR. DAVID and WebGestalt were used to perform enrichment analysis. Cytoscape was used to construct a protein–protein network, a coexpression network, and a competitive endogenous RNA network to reveal the regulatory mechanisms of lncRNAs at the transcriptome level.ResultsA total of 1737 DELs and 4078 DEMs were identified between SLE patients and healthy controls. Ten lncRNAs and eight genes were verified by qPCR in a larger sample set. The lncRNA NONHSAT101022.2 was significantly downregulated in SLE patients and was also significantly related to the activity and severity of disease. The upregulated genes were enriched in defense and the immune response, while the downregulated genes were mainly enriched in SLE-related pathways. Topology network analysis revealed that the lncRNAs were involved in regulation at the transcriptome level, including acting directly on mRNA or indirectly affecting gene expression by acting on miRNA.ConclusionIn this work, we identified many mRNAs and novel lncRNAs by transcriptome sequencing. The functions and regulatory mechanisms of these lncRNAs were analyzed by bioinformatic methods. The novel lncRNA NONHSAT101022.2 is significantly downregulated in SLE patients and is significantly related to the activity and severity of disease. Additionally, we propose that NONHSAT101022.2 may enhance the signal transduction of β2-AR by cis regulating LMBRD2, inducing NK cells to produce high levels of IFN-γ and thereby exacerbating SLE.


2021 ◽  
Author(s):  
Joanna B Niklinska-Schirtz ◽  
Suresh Venkateswaran ◽  
Murugadas Anbazhagan ◽  
Vasantha L Kolachala ◽  
Jarod Prince ◽  
...  

Background: We used patient derived organoids (PDOs) to study the epithelial-specific transcriptional and secretome signatures of the ileum during CD with varying phenotypes to screen for disease profiles and potential druggable targets. Methods: RNA sequencing was performed on isolated intestinal crypts and 3-week-old PDOs derived from ileal biopsies of CD patients (n= 8 B1, inflammatory; n= 8 B2, stricturing disease) and non-IBD controls (n= 13). Differentially expressed (DE) genes were identified by comparing CD vs control, B1 vs B2, and inflamed vs non-inflamed. DE genes were used for computational screening to find candidate small molecules that could potentially reverse B1and B2 gene signatures. The secretome of a second cohort (n= 6 non-IBD controls, n=7 CD; 5 non-inflamed, 2 inflamed) was tested by Luminex using cultured organoid conditioned media. Results: We found a 90% similarity in both the identity and abundance of protein coding genes between PDOs and intestinal crypts (15,554 transcripts of 19,900 genes). DE analysis identified 814 genes among disease group (CD vs non-IBD control), 470 genes different between the CD phenotypes, and 5 FDR significant genes between inflamed and non-inflamed CD. The PDOs showed both similarity and diversity in the levels and types of soluble cytokines and growth factors they released. Perturbagen analysis revealed potential candidate compounds to reverse B2 disease phenotype to B1 in PDOs. Conclusion: PDOs are similar at the transcriptome level with the in vivo epithelium and retain disease-specific gene expression for which we have identified secretome products, druggable targets and corresponding pharmacological agents. Targeting the epithelium could reverse a stricturing phenotype and improve outcomes.


Sign in / Sign up

Export Citation Format

Share Document