corneal epithelial cell
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 60)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Bowen Wang ◽  
Hao Zeng ◽  
Xin Zuo ◽  
Xue Yang ◽  
Xiaoran Wang ◽  
...  

Dry eye disease (DED) is one of the most common ocular surface diseases worldwide. DED has been characterized by excessive accumulation of reactive oxygen species (ROS), following significant corneal epithelial cell death and ocular surface inflammation. However, the key regulatory factor remains unclear. In this study, we tended to explore whether DUOX2 contributed to DED development and the underlying mechanism. Human corneal epithelial (HCE) cells were treated with hyperosmolarity, C57BL/6 mice were injected of subcutaneous scopolamine to imitate DED. Expression of mRNA was investigated by RNA sequencing (RNA-seq) and quantitative real-time PCR (qPCR). Protein changes and distribution of DUOX2, high mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), and 4-hydroxynonenal (4-HNE) were evaluated by western blot assays and immunofluorescence. Cell death was assessed by Cell Counting Kit-8 (CCK8), lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Cellular ROS levels and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. RNA-seq and western blot assay indicated a significant increase of DUOX2 dependent of TLR4 activation in DED both in vitro and in vivo. Immunofluorescence revealed significant translocation of HMGB1 within corneal epithelial cells under hyperosmolar stress. Interestingly, after ablated DUOX2 expression by siRNA, we found a remarkable decrease of ROS level and recovered MMP in HCE cells. Moreover, knockdown of DUOX2 greatly inhibited HMGB1 release, protected cell viability and abolished inflammatory activation. Taken together, our data here suggest that upregulation of DUOX2 plays a crucial role in ROS production, thereafter, induce HMGB1 release and cell death, which triggers ocular surface inflammation in DED.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Divya Arunachalam ◽  
Shruthi Mahalakshmi Ramanathan ◽  
Athul Menon ◽  
Lekshmi Madhav ◽  
Gopalakrishna Ramaswamy ◽  
...  

Abstract Background Aspergillus flavus, one of the causative agents of human fungal keratitis, can be phagocytosed by human corneal epithelial (HCE) cells and the conidia containing phagosomes mature into phagolysosomes. But the immunological responses of human corneal epithelial cells interacting with A. flavus are not clear. In this study, we report the expression of immune response related genes of HCE cells exposed to A. flavus spores using targeted transcriptomics. Methods Human corneal epithelial cell line and primary cultures were grown in a six-well plate and used for coculture experiments. Internalization of the conidia was confirmed by immunofluorescence microscopy of the colocalized endosomal markers CD71 and LAMP1. Total RNA was isolated, and the quantity and quality of the isolated RNA were assessed using Qubit and Bioanalyzer. NanoString nCounter platform was used for the analysis of mRNA abundance using the Human Immunology panel. R-package and nSolver software were used for data analysis. KEGG and FunRich 3.1.3 tools were used to analyze the differentially expressed genes. Results Different morphotypes of conidia were observed after 6 h of coculture with human corneal epithelial cells and found to be internalized by epithelial cells. NanoString profiling showed more than 20 differentially expressed genes in immortalized human corneal epithelial cell line and more than ten differentially expressed genes in primary corneal epithelial cells. Distinct set of genes were altered in their expression in cell line and primary corneal epithelial cells. KEGG pathway analysis revealed that genes associated with TNF signaling, NF-KB signaling, and Th17 signaling were up-regulated, and genes associated with chemokine signaling and B cell receptor signaling were down regulated. FunRich pathway analysis showed that pathways such as CDC42 signaling, PI3K signaling, and Arf6 trafficking events were activated by the clinical isolates CI1123 and CI1698 in both type of cells. Conclusions Combining the transcript analysis data from cell lines and primary cultures, we showed the up regulation of immune defense genes in A. flavus infected cells. At the same time, chemokine signaling and B cell signaling pathways are downregulated. The variability in the expression levels in the immortalized cell line and the primary cultures is likely due to the variable epigenetic reprogramming in the immortalized cells and primary cultures in the absence of any changes in the genome. It highlights the importance of using both cell types in host-pathogen interaction studies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2142
Author(s):  
Alejandro Sosnik ◽  
Ronya Ben Shabo ◽  
Hen Moshe Halamish

Ocular drug delivery is challenging due to the very short drug residence time and low permeability. In this work, we produce and characterize mucoadhesive mixed polymeric micelles (PMs) made of chitosan (CS) and poly(vinyl alcohol) backbones graft-hydrophobized with short poly(methyl methacrylate) blocks and use them to encapsulate cannabidiol (CBD), an anti-inflammatory cannabinoid. CBD-loaded mixed PMs are physically stabilized by ionotropic crosslinking of the CS domains with sodium tripolyphoshate and spray-drying. These mixed PMs display CBD loading capacity of 20% w/w and sizes of 100–200 nm, and spherical morphology (cryogenic-transmission electron microscopy). The good compatibility of the unloaded and CBD-loaded PMs is assessed in a human corneal epithelial cell line. Then, we confirm the permeability of CBD-free PMs and nanoencapsulated CBD in human corneal epithelial cell monolayers under liquid–liquid and air–liquid conditions. Overall, our results highlight the potential of these polymeric nanocarriers for ocular drug delivery.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2139
Author(s):  
Rita Mencucci ◽  
Giovanni Strazzabosco ◽  
Virginia Cristofori ◽  
Andrea Alogna ◽  
Daria Bortolotti ◽  
...  

This study aimed to evaluate the mucoadhesive and regenerative properties of a novel lubricating multimolecular ophthalmic solution (GlicoPro®) extracted from snail mucus and its potential anti-inflammatory and analgesic role in the management of dry eye disease (DED). GlicoPro bio-adhesive efficacy was assessed using a lectin-based assay, and its regenerative properties were studied in a human corneal epithelial cell line. In vitro DED was induced in human corneal tissues; the histology and mRNA expression of selected genes of inflammatory and corneal damage biomarkers were analyzed in DED tissues treated with GlicoPro. A higher percentage of bio-adhesivity was observed in corneal cells treated with GlicoPro than with sodium hyaluronate-based compounds. In the scratch test GlicoPro improved in vitro corneal wound healing. Histo-morphological analysis revealed restoration of cellular organization of the corneal epithelium, microvilli, and mucin network in DED corneal tissues treated with GlicoPro. A significant reduction in inflammatory and ocular damage biomarkers was observed. High-performance liquid chromatography-mass spectrometry analysis identified an endogenous opioid, opiorphin, in the peptide fraction of GlicoPro. In conclusion, GlicoPro induced regeneration and bio-adhesivity in corneal cells; moreover, considering its anti-inflammatory and analgesic properties, this novel ophthalmic lubricating solution may be an innovative approach for the management of DED.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuhan Yang ◽  
Minjie Chen ◽  
Zimeng Zhai ◽  
Yiqin Dai ◽  
Hao Gu ◽  
...  

Purpose: To elucidate the expression profile and the potential role of long non-coding ribonucleic acids (RNAs) (lncRNAs) in a dry eye disease (DED) model.Methods: A DED model was established in C57BL/6J mice with 0.2% benzalkonium chloride (BAC) twice a day for 14 days. The differentially expressed lncRNAs were detected by RNA-seq technology (Gene Expression Omnibus, GEO GSE186450) and the aberrantly expressed lncRNAs were further verified by RT-qPCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predicate the related candidate genes and potential pathological pathways. Cells from a human corneal epithelial cell line (HCECs) were cultured under hyperosmolarity. The regulation of inflammatory factors by silencing potential targeted lncRNAs was verified in vitro in HCECs.Results: In our study, a significant increase in corneal fluorescence staining and a reduction in tear production were observed in DED mice at all follow-ups compared with the controls, and the differences were increasing over time. In total, 2,649 upregulated and 704 downregulated lncRNAs were identified in DED mice. We selected six aberrantly expressed and most abundant lncRNAs and performed RT-qPCR using the samples for RNA-seq. Chrnb2, Gabarapl2, and Usp31 were thereby confirmed as the most significantly altered lncRNAs. Pathway analysis revealed that the neuroactive ligand–receptor interaction signaling pathway was the most enriched, followed by the calcium signaling pathway and cytokine–cytokine receptor interaction. Following treatment of Gabarapl2 siRNA and Chrnb2 siRNA, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were significantly downregulated in the HCECs.Conclusion: Our study suggests that Chrnb2 and Gabarapl2 may be involved in the inflammation response by regulating TNF-α, IL-1β, and IL-6 in DED. These candidate lncRNAs may be both potential biomarkers and therapeutic targets for DED.


Author(s):  
Alejandro Sosnik ◽  
Ronya Ben Shabo ◽  
Hen Moshe Halamish

Ocular drug delivery is one of the most challenging administration routes due to the very low drug bioavailability. In this work, we produce and characterize mucoadhesive mixed polymeric micelles (PMs) made of chitosan and poly(vinyl alcohol) backbones graft-hydrophobized with short poly(methyl methacrylate) blocks and use them to encapsulate cannabidiol (CBD), an anti-inflammatory cannabinoid. CBD-loaded mixed PMs are physically stabilized by ionotropic crosslinking of the CS domains with sodium tripolyphoshate and spray-drying. These mixed PMs display CBD loading capacity of 20% w/w and sizes of 100-200 nm, and spherical morphology (cryogenic-transmission electron microscopy). The good compatibility of the unloaded and CBD-loaded PMs is assessed in a human corneal epithelial cell line. Then, we confirm the permeability of CBD-free PMs and nanoencapsulated CBD in cornea cell monolayers under liquid-liquid and air-liquid conditions. Overall, our results highlight the potential of these polymeric nanocarriers for ocular drug delivery.


2021 ◽  
Author(s):  
Daniel Morgan Foulkes ◽  
Keri McLean ◽  
Marta Sloniecka ◽  
Dominic Byrne ◽  
Atikah S Haneef ◽  
...  

Infection from the opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments and lysosomal degradation. ExoU is a potent phospholipase which causes rapid destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitro than other antimicrobial classes. However, their overuse over the past decade has caused alarming rates of antibiotic resistance to emerge. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered tobramycin disrupted T3SS expression and inhibited both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-T cells even at concentrations below the minimal inhibitory concentrations (MIC). Fluoroquinolones moxifloxacin and ciprofloxacin, however, upregulated the T3SS and in particular did not subvert the cytotoxic effects of ExoS and ExoU.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wataru Otsu ◽  
Kodai Ishida ◽  
Naoki Chinen ◽  
Shinsuke Nakamura ◽  
Masamitsu Shimazawa ◽  
...  

AbstractThe cornea is directly exposed to cigarette smoke, and smoking is a risk factor for several corneal diseases including dry eye syndrome. Currently, heated tobacco products (HTPs) are widely used as substitutes for cigarette smoking around the world. In the present study, we investigated the molecular mechanism(s) leading to cellular injury induced by cigarette smoke extract (CSE) or HTPs. Exposure to CSE perturbed the formation of tight junctions, leading to an increase in cell volume, a decrease in transepithelial electrical resistance (TER) in the human corneal epithelial cell-transformed (HCE-T) cell line. Moreover, CSE exposure induced both lipid peroxidation and ferrous [Fe(II)] ion accumulation in autolysosomal compartments. Interestingly, a cleaved form of ferritin appeared when HCE-T cells were incubated with CSE. This aberrant ferritin processing was suppressed by treatment with autophagy inhibitors. Furthermore, the CSE-induced cell death was suppressed by either ferrostatin-1 or deferoxamine (DFO). CSE exposure also promoted the expression of cytokines whereas DFO treatment inhibited the CSE-induced expression of these cytokines. Exposure to HTPs also induced both HCE-T cell death and cleaved ferritin accumulation in a concentration- and time-dependent manner. These results indicated that CSE or HTPs activated the ferroptosis signaling pathway, which contributed to corneal epithelial cell injury.


Sign in / Sign up

Export Citation Format

Share Document