temperature asymmetry
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Mingqiu Hou ◽  
Guangsheng Zhuang ◽  
et al.

Table S1: Leaf wax isotopic records in the Gulf of Mexico; Table S2: Reconstructions of mean annual precipitation based on leaf wax carbon isotopic records; Table S3: Sea surface temperature reconstructions; Table S4: Leaf wax isotopic records of modern trees.


2021 ◽  
Author(s):  
Mingqiu Hou ◽  
Guangsheng Zhuang ◽  
et al.

Table S1: Leaf wax isotopic records in the Gulf of Mexico; Table S2: Reconstructions of mean annual precipitation based on leaf wax carbon isotopic records; Table S3: Sea surface temperature reconstructions; Table S4: Leaf wax isotopic records of modern trees.


Author(s):  
Asghar Qadir ◽  
Francesco De Paolis

AbstractIn 1995, it was suggested that some of the baryonic dark matter in galaxies may be in the form of molecular hydrogen clouds, and a mechanism for observing them had been given. In the same year, a novel method of seeing the clouds was proposed, that is to look for a temperature asymmetry in the cosmic microwave background towards the M31 galaxy, due to a “Doppler effect” induced by the M31 halo rotation. This temperature asymmetry has since been seen and confirmed in M31 and other galaxies, and used to study the rotation of galactic haloes and map their dynamics. It had been questioned whether such clouds could actually exist, and in response, the clouds were modeled and shown to be possible. It then becomes necessary to trace the evolution of those clouds from their formation to the modern day. Here, the development of the ideas is reviewed.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Noraiz Tahir ◽  
Asghar Qadir ◽  
Muhammad Sakhi ◽  
Francesco De Paolis

AbstractThe analysis of WMAP and Planck CMB data has shown the presence of temperature asymmetries towards the halos of several galaxies, which is probably due to the rotation of clouds present in these halos about the rotational axis of the galaxies. It had been proposed that these are hydrogen clouds that should be in equilibrium with the CMB. However, standard theory did not allow equilibrium of such clouds at the very low CMB temperature, but it was recently shown that the equilibrium could be stable. This still does not prove that the cloud concentration and that the observed temperature asymmetry is due to clouds in equilibrium with the CMB. To investigate the matter further, it would be necessary to trace the evolution of such clouds, which we call “virial clouds”, from their formation epoch to the present, so as to confront the model with the observational data. The task is to be done in two steps: (1) from the cloud formation before the formation of first generation of stars; (2) from that time to the present. In this paper we deal with the first step leaving the second one to a subsequent analysis.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3712
Author(s):  
Balázs András-Tövissi ◽  
László Kajtár ◽  
Árpád Nyers

In the case of public buildings with ceiling heating and mechanical ventilation, radiant temperature asymmetry caused by the warm ceiling and draught occur simultaneously. The currently available literature does not offer an exhaustive description of the comfort conditions resulting from such a thermal environment. This research focuses on complementing the available knowledge, using instrumental measurements, as well as subject measurements carried out on 20 individuals. Relying on these measurements, the purpose of the research is to support the understanding of the combined mechanisms of action of the two local discomfort parameters. The main result of this research is that, if the predicted percentage dissatified is less than 6%, the radiant temperature asymmetry is in an interval of 5–15 °C, and the draught rate is 15% or 25%, the actual mean vote and the predicted mean vote values differ significantly, and the actual mean vote is always lower, with a few exceptions. In addition, the research highlights the changes of the actual mean vote caused by raising the draught rate from 15% to 25%, in the presence of radiant temperature asymmetry caused by warm ceilings.


2021 ◽  
pp. 231-231
Author(s):  
Balázs András-Tövissi ◽  
László Kajtár ◽  
József Nyers

The aim of the present research was to investigate the temporal change of the AMV votes of subjects exposed to the joint effect of warm ceilings and draught. The paper investigates whether the value of AMV remains constant or it changes over time under a constant thermal environment? To answer this question, we performed human subject studies involving 10 men and 10 women. The results were analyzed in function of time. The most important result is that, throughout the 180-min studies, in the 5-15 oC radiant temperature asymmetry interval between warm ceiling and floor, with a DR=15% and DR=25%, draught rate, the AMV value was not constant but showed a decreasing trend. Furthermore, there was a significant discrepany among the votes of females and males.


Author(s):  
Umberto Triacca

AbstractThe aim of this paper is to investigate the relationships among Interhemispheric Temperature Asymmetry (ITA) and the principal modes of natural variability: the Atlantic Multidecadal Oscillation (AMO), the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO). In particular, Granger causality tests are used to capture the linkages among these variables. Our analysis provides strong evidence that AMO causes ITA, the causal role of PDO is weak, and SOI seems to have no causal influence.


2020 ◽  
Vol 494 (2) ◽  
pp. 2839-2850 ◽  
Author(s):  
E L Osborne ◽  
D I Jones

ABSTRACT Many low-mass X-ray binary systems are observed to contain rapidly spinning neutron stars. The spin frequencies of these systems may be limited by the emission of gravitational waves. This can happen if their mass distribution is sufficiently non-axisymmetric. It has been suggested that such ‘mountains’ may be created via temperature non-axisymmetries, but estimates of the likely level of temperature asymmetry have been lacking. To remedy this, we examine a simple symmetry breaking mechanism, where an internal magnetic field perturbs the thermal conductivity tensor, making it direction-dependent. We find that the internal magnetic field strengths required to build mountains of the necessary size are very large, several orders of magnitude larger than the inferred external field strengths, pushing into the regime where our assumption of the magnetic field having a perturbative effect on the thermal conductivity breaks down. We also examine how non-axisymmetric surface temperature profiles, as might be caused by magnetic funnelling of the accretion flow, lead to internal temperature asymmetries, but find that for realistic parameters the induced non-axisymmetries are very small. We conclude that, in the context of this work at least, very large internal magnetic fields are required to generate mountains of the necessary size.


Sign in / Sign up

Export Citation Format

Share Document