The genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) increases over time. In 1998, restriction-fragment length polymorphism (RFLP) pattern analysis was introduced to differentiate PRRSV wild-type strains from VR2332, a reference strain from which a commercial vaccine (Ingelvac PRRS MLV) was derived. We have characterized here the PRRSV genetic diversity within selected RFLP families over time and U.S. geographic space, using available ISU-VDL data from 2007 to 2019. The 40,454 ORF5 sequences recovered corresponded to 228 distinct RFLPs. Four RFLPs [2-5-2 (21.2%), 1-7-4 (15.6%), 1-4-4 (11.8%), and 1-8-4 (9.9%)] represented 58.5% of all ORF5 sequences and were used for cluster analysis. Over time, there was increased detection of RFLPs 2-5-2, 1-7-4, 1-3-4, 1-3-2, and 1-12-4; decreased detection of 1-4-2, 1-18-4, 1-18-2, and 1-2-2; and different detection trends for 1-8-4, 1-4-4, 1-26-1, 1-22-2, and 1-2-4. An over-time cluster analysis revealed a single cluster for RFLP 2-5-2, supporting that sequences within RFLP 2-5-2 are still relatively conserved. For 1-7-4, 1-4-4, and 1-8-4, there were multiple clusters. State-wise cluster analysis demonstrated 4 main clusters for RFLP 1-7-4 and 1-8-4, and 6 for RFLP 1-4-4. For the other RFLPs, there was a significant genetic difference within them, particularly between states. RFLP typing is limited in its ability to discriminate among different strains of PRRSV. Understanding the magnitude of genetic divergence within RFLPs helps develop PRRSV regional control programs, placement, herd immunization strategies, and design of appropriate animal movements across borders to minimize the risk of PRRSV transmission.