rectal gland
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 10)

H-INDEX

36
(FIVE YEARS 1)

Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Giampaolo Bosi ◽  
Paolo Merella ◽  
Barbara J. Maynard ◽  
Bahram Sayyaf Dezfuli

Sharks belong to the most primitive group of jawed vertebrates and have some special structural and functional features such as a cartilaginous skeleton, a spiral intestinal valve, and a rectal gland for osmoregulation. In January 2020, ten specimens of Galeus melastomus, the Blackmouth catshark, were collected from the Gulf of Asinara (North Sardinia, Italy) and the entire alimentary canal was studied using histochemical reactions to characterize the mucous cell types. In the alimentary canal of G. melastomus, mucous cells mainly secrete a mixture of acidic and neutral mucins. Of the acidic mucins, only the carboxylated type was present in mucous cells of the stomach, while the sulfated type predominated in the esophagus and the intestines. The use of lectins revealed a distribution of sugar residues in mucins related to cellular activities of the different regions of the catshark alimentary canal. The current study is the first report to characterize the intestinal mucous cells of G. melastomus and to provide quantitative data on their different populations in the alimentary canal.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5024
Author(s):  
Sally Noushini ◽  
Soo Jean Park ◽  
Jeanneth Perez ◽  
Danielle Holgate ◽  
Vivian Mendez ◽  
...  

Pheromones are biologically important in fruit fly mating systems, and also have potential applications as attractants or mating disrupters for pest management. Bactrocera kraussi (Hardy) (Diptera: Tephritidae) is a polyphagous pest fruit fly for which the chemical profile of rectal glands is available for males but not for females. There have been no studies of the volatile emissions of either sex or of electrophysiological responses to these compounds. The present study (i) establishes the chemical profiles of rectal gland contents and volatiles emitted by both sexes of B. kraussi by gas chromatography–mass spectrometry (GC–MS) and (ii) evaluates the detection of the identified compounds by gas chromatography–electroantennogram detection (GC–EAD) and –electropalpogram detection (GC–EPD). Sixteen compounds are identified in the rectal glands of male B. kraussi and 29 compounds are identified in the rectal glands of females. Of these compounds, 5 were detected in the headspace of males and 13 were detected in the headspace of females. GC–EPD assays recorded strong signals in both sexes against (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-ethyl-7-mehtyl-1,6-dioxaspiro[4.5]decane isomer 2, (E,Z)/(Z,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, and (Z,Z)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. Male antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-methyl-6-pentyl-3,4-dihydro-2H-pyran, 6-hexyl-2-methyl-3,4-dihydro-2H-pyran, 6-oxononan-1-ol, ethyl dodecanoate, ethyl tetradecanoate and ethyl (Z)-hexadec-9-enoate, whereas female antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and 2-methyl-6-pentyl-3,4-dihydro-2H-pyran only. These compounds are candidates as pheromones mediating sexual interactions in B. kraussi.


Author(s):  
Andressa C.M. de Melo ◽  
Cláudio Barboza de Andrade ◽  
Aline Poscai ◽  
Mariana Gomes do Rêgo ◽  
Fabrício Bezerra de Sá ◽  
...  
Keyword(s):  

Author(s):  
Sumeet Bhanot ◽  
Gabriele Hemminger ◽  
Cole L. Martin ◽  
Stephen G. Aller ◽  
John N. Forrest

Adenosine receptors (ADORs) are G-protein coupled purinoceptors that have several functions including regulation of chloride secretion via CFTR in human airway and kidney. We cloned an ADOR from Squalus acanthias (shark) that likely regulates CFTR in the rectal gland. Phylogenic- and expression- analyses indicate that elasmobranch ADORs are non-olfactory, and appear to represent extant predecessors of mammalian ADORs. We therefore designate the shark ADOR as the A0 receptor. We co-expressed A0 with CFTR in Xenopus laevis oocytes and characterized the coupling of A0 to the chloride channel. Two electrode voltage clamping was performed and current-voltage (I-V) responses were recorded to monitor CFTR status. Only in A0- and CFTR- co-injected oocytes did adenosine analogs produce a significant concentration-dependent activation of CFTR consistent with its electrophysiological signature. A pharmacological profile for A0 was obtained for ADOR agonists and antagonists that differed markedly from all mammalian ADOR subtypes (agonists: R-PIA > S-PIA > CGS21680 > CPA > 2ClADO > CV1808 = DPMA > NECA) and (antagonists: DPCPX > PD115199 > 8PT > CGC > CGS15943). Structures of human ADORs permitted a high-confidence homology model of the shark A0 core which revealed unique structural features of ancestral receptors. We conclude: (1) A0 is a novel and unique adenosine receptor ancestor by functional and structural criteria; (2) A0 likely activates CFTR in vivo and this receptor activates CFTR in oocytes indicating an evolutionary coupling between ADORs and chloride secretion; and (3) A0 appears to be a non-olfactory evolutionary ancestor of all four mammalian ADOR subtypes.


2020 ◽  
Vol 61 (2) ◽  
pp. 175-184
Author(s):  
Andrej Gajić ◽  
Hajrudin Beširović ◽  
Jovana Šupić ◽  
Nurija Bilanović ◽  
Adla Kahrić ◽  
...  

Melanomacrophages of fish are commonly explored as biomarkers of water pollution and are considered to be sensitive albeit non-specific health indicators in water ecosystems. Sharks as long living marine species are good sentinel species. This study presents morphometric data for splenic and hepatic melanomacrophages (MMC), and observed histopathology in ten lesser-spotted catsharks, Scyliorhinus canicula (L.), one of the most abundant shark species in the eastern Adriatic Sea. At necropsy, we collected random tissue samples from liver, brain, gallblader, pancreas, spleen, kidney, gills, entire digestive system, thyroid gland, rectal gland, entire urogenital (male samples) and genital system (female samples). Collected tissue samples were routinely processed and stained with hematoxylin-eosin, Periodic Acid-Schiff, and Masson Trichrome for microscopic examinations and morphometry. There was a minimal number of histopathological lesions in the examined sharks, but morphometric values reported herein were three folds higher than in previous studies in free-ranging sharks. Studies on larger numbers of sharks are needed to elucidate the biological significance of our finding in the context of population decline of the lesser-spotted catshark.


Chemoecology ◽  
2020 ◽  
Author(s):  
Saeedeh Noushini ◽  
Soo Jean Park ◽  
Ian Jamie ◽  
Joanne Jamie ◽  
Phillip Taylor

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saeedeh Noushini ◽  
Soo Jean Park ◽  
Ian Jamie ◽  
Joanne Jamie ◽  
Phillip Taylor

AbstractDiverse methods have been used to sample insect semiochemicals. Sampling methods can differ in efficiency and affinity and this can introduce significant biases when interpreting biological patterns. We compare common methods used to sample tephritid fruit fly rectal gland volatiles (‘pheromones’), focusing on Queensland fruit fly, Bactrocera tryoni. Solvents of different polarity, n-hexane, dichloromethane and ethanol, were compared using intact and crushed glands. Polydimethylsiloxane, polydimethylsiloxane/divinylbenzene and polyacrylate were compared as adsorbents for solid phase microextraction. Tenax-GR and Porapak Q were compared as adsorbents for dynamic headspace sampling. Along with compounds previously reported for B. tryoni, we detected five previously unreported compounds in males, and three in females. Dichloromethane extracted more amides while there was no significant difference between the three solvents in extraction of spiroacetals except for (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane for which n-hexane extracted higher amount than both dichloromethane and ethanol. Ethanol failed to contain many of the more volatile compounds. Crushed rectal gland samples provided higher concentrations of extracted compounds than intact rectal gland samples, but no compounds were missed in intact samples. Of solid phase microextraction fibers, polyacrylate had low affinity for spiroacetals, ethyl isobutyrate and ethyl-2-methylbutanoate. Polydimethylsiloxane was more efficient for spiroacetals while type of fiber did not affect the amounts of amides and esters. In dynamic headspace sampling, Porapak was more efficient for ethyl isobutyrate and spiroacetals, while Tenax was more efficient for other esters and amides, and sampling time was a critical factor. Biases that can be introduced by sampling methods are important considerations when collecting and interpreting insect semiochemical profiles.


2020 ◽  
Author(s):  
Sumeet Bhanot ◽  
Gabriele Hemminger ◽  
Stephen G. Aller ◽  
John N. Forrest

AbstractAdenosine receptors (ADORs) are G-protein coupled purinoceptors that have several functions including regulation of chloride secretion via CFTR in human airway and kidney. We cloned an ADOR from Squalus acanthias (shark) that likely regulates CFTR in the rectal gland. Phylogenic- and expression-analyses indicate that elasmobranch ADORs are non-olfactory, and appear to represent extant predecessors of mammalian ADORs. We therefore designate the shark ADOR as the A0 receptor. We co-expressed A0 with CFTR in Xenopus laevis oocytes and characterized the coupling of A0 to the chloride channel. Two electrode voltage clamping was performed and current-voltage (I-V) responses were recorded to monitor CFTR status. Only in A0- and CFTR-co-injected oocytes did adenosine analogs produce a significant dose-dependent activation of CFTR consistent with its electrophysiological signature. A pharmacological profile for A0 was obtained for ADOR agonists and antagonists that differed markedly from all mammalian ADOR subtypes (agonists: R-PIA > S-PIA > CGS21680 > CPA > 2ClADO > CV1808 = DPMA > NECA) and (antagonists: DPCPX > PD115199 > 8PT > CGC > CGS15943). Structures of human ADORs permitted a high-confidence homology model of the shark A0 core which revealed unique structural features of ancestral receptors. We conclude: (1) A0 is a novel and unique adenosine receptor ancestor by functional and structural criteria; (2) A0 likely activates CFTR in vivo and this receptor activates CFTR in oocytes indicating an evolutionary coupling between ADORs and chloride secretion; and (3) A0 appears to be a non-olfactory evolutionary ancestor of all four mammalian ADOR subtypes.Significance StatementWe have cloned and characterized an ancient adenosine receptor from sharks that is unlikely to be olfactory in function. The shark receptor, which we designate as A0, has a unique pharmacological profile, characteristic structural features, and is also highly likely to be the dominant ADOR regulator of the shark ancient ortholog of the Cystic Fibrosis chloride channel, called CFTR.


2020 ◽  
Vol 319 (1) ◽  
pp. R96-R105
Author(s):  
Rolf Kinne ◽  
Katherine C. Spokes ◽  
Patricio Silva

The rectal gland of the spiny dogfish Squalus acanthias secretes a salt solution isosmotic with plasma that maintains the salt homeostasis of the fish. It secretes salt against an electrochemical gradient that requires the expenditure of energy. Isolated rectal glands perfused without glucose secrete salt, albeit at a rate about 30% of glands perfused with 5 mM glucose. Gradually reducing the glucose concentration is associated with a progressive decrease in the secretion of chloride. The apparent Km for the exogenous glucose-dependent chloride secretion is around 2 mM. Phloretin and cytochalasin B, agents that inhibit facilitated glucose carriers of the solute carrier 2 (Slc2) family such as glucose transporter 2 (GLUT2), do not inhibit the secretion of chloride by the perfused rectal glands. Phloridzin, which inhibits Slc5 family of glucose symporters, or α-methyl-d-glucoside, which competitively inhibits the uptake of glucose through Slc5 symporters, inhibit the secretion of chloride. Thus the movement of glucose into the rectal gland cells appears to be mediated by a sodium-glucose symporter. Sodium-glucose cotransporter 1 (SGLT1), the first member of the Slc5 family of sodium-linked glucose symporters, was cloned from the rectal gland. No evidence of GLUT2 was found. The persistence of secretion of chloride in the absence of glucose in the perfusate suggests that there is an additional source of energy within the cells. The use of 2-mercapto-acetate did not result in any change in the secretion of chloride, suggesting that the oxidation of fatty acids is not the source of energy for the secretion of chloride. Perfusion of isolated glands with KCN in the absence of glucose further reduces the secretion of chloride but does not abolish it, again suggesting that there is another source of energy within the cells. Glucose was measured in the rectal gland cells and found to be at concentrations in the range of that in the perfusate. Glycogen measurements indicated that there are significant stores of glucose in the rectal gland. Moreover, glycogen synthase was partially cloned from rectal gland cells. The open reading frame of glycogen phosphorylase was also cloned from rectal gland cells. Measurements of glycogen phosphorylase showed that the enzyme is mostly in its active form in the cells. The cells of the rectal gland of the spiny dogfish require exogenous glucose to fully support the active secretion of salt. They have the means to transport glucose into the cells in the form of SGLT1. The cells also have an endogenous supply of glucose as glycogen and have the necessary elements to synthesize, store, and hydrolyze it.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1275 ◽  
Author(s):  
Saeedeh Noushini ◽  
Jeanneth Perez ◽  
Soo Jean Park ◽  
Danielle Holgate ◽  
Vivian Mendez Alvarez ◽  
...  

Bactrocera frauenfeldi (Schiner) (Diptera: Tephritidae) is a polyphagous fruit fly pest species that is endemic to Papua New Guinea and has become established in several Pacific Islands and Australia. Despite its economic importance for many crops and the key role of chemical-mediated sexual communication in the reproductive biology of tephritid fruit flies, as well as the potential application of pheromones as attractants, there have been no studies investigating the identity or activity of rectal gland secretions or emission profiles of this species. The present study (1) identifies the chemical profile of volatile compounds produced in rectal glands and released by B. frauenfeldi, (2) investigates which of the volatile compounds elicit an electroantennographic or electropalpographic response, and (3) investigates the potential function of glandular emissions as mate-attracting sex pheromones. Rectal gland extracts and headspace collections from sexually mature males and females of B. frauenfeldi were analysed by gas chromatography-mass spectrometry. Male rectal glands contained (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro [5.5]undecane as a major component and (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane as a moderate component. Minor components included palmitoleic acid, palmitic acid, and ethyl oleate. In contrast, female rectal glands contained (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and ethyl laurate as major components, ethyl myristate and ethyl palmitoleate as moderate components, and 18 minor compounds including amides, esters, and spiroacetals. Although fewer compounds were detected from the headspace collections of both males and females than from the gland extractions, most of the abundant chemicals in the rectal gland extracts were also detected in the headspace collections. Gas chromatography coupled electroantennographic detection found responses to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane from the antennae of both male and female B. frauenfeldi. Responses to (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane were elicited from the antennae of females but not males. The two spiroacetals also elicited electropalpographic responses from both male and female B. frauenfeldi. Ethyl caprate and methyl laurate, found in female rectal glands, elicited responses in female antennae and palps, respectively. Y-maze bioassays showed that females were attracted to the volatiles from male rectal glands but males were not. Neither males nor females were attracted to the volatiles from female rectal glands. Our findings suggest (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane as components of a sex-attracting pheromone in B. frauenfeldi.


Sign in / Sign up

Export Citation Format

Share Document