field energy
Recently Published Documents


TOTAL DOCUMENTS

751
(FIVE YEARS 211)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Han Mingyue ◽  
Yang Luo ◽  
Liuhe Li ◽  
Hua Li ◽  
Ye Xu ◽  
...  

Abstract Investigating the ion dynamics in the emerging bipolar pulse high power impulse magnetron sputtering (BP-HiPIMS) discharge is necessary and important for broadening its industrial applications. Recently, an optimized plasma source operating the BP-HiPIMS with an auxiliary anode and a solenoidal coil is proposed to enhance the plasma flux and energy, named as ACBP-HiPIMS (‘A’-anode, ‘C’-coil). In the present work, the temporal evolutions of the ion velocity distribution functions (IVDF) in BP-HiPIMS and ACBP-HiPIMS discharges are measured using a retarding field energy analyser (RFEA). For the BP-HiPIMS discharge, operated at various positive pulse voltages U+, the temporal evolutions of IVDFs illustrate that there are two high-energy peaks, E1 and E2, which are both lower than the applied U+. The ratio of the mean ion energy Ei,mean to the applied U+ is around 0.55-0.6 at various U+. In ACBP-HiPIMS discharge, the IVDF evolution shows three distinguishable stages which has the similar evolution trend with the floating potential Vf on the RFEA frontplate: (i) the stable stage with two high-energy peaks (E2 and E3 with energy respectively lower and higher than the applied U+ amplitude) when the floating potential Vf is close to the applied positive pulse voltage; (ii) the transition stage with low-energy populations when the Vf drops by ~20 V within ~10 μs; and (iii) the oscillation stage with alternating E2 and E3 populations and ever-present E1 population when the Vf slighly descreases unitl to the end of positive pulse. The comparison of IVDFs in BP-HiPIMS and ACBP-HiPIMS suggests that both the mean ion energy and high-energy ion flux have been effectively improved in ACBP-HiPIMS discharge. The formation of floating potential drop is explored using the Langmuir probe which may be attributed to the establishment of anode double layer structure.


2022 ◽  
Author(s):  
A. Khramov

Abstract. Studies have been carried out to assess the effectiveness of dry processing by the current preparations from the heat-resistant alloy CN45MVTUBR with mineral ceramic incisors with the introduction of the ultrasound-field energy treatment zone. It has been established that the use of ULTRASOUND in the rough treatment of mineral ceramic tools without coolant allows to reduce the depth of the defective layer in 1.5 times.


Author(s):  
Lisa Buschmann ◽  
Ashild Fredriksen

Abstract The information about the electron population of a helicon source plasma that expands along a magnetic nozzle is important for understanding the plasma acceleration across the potential drop that forms in the nozzle. The electrons need an energy higher than the potential drop to escape from the source. At these energies the signal of a Langmuir probe is less accurate. An inverted RFEA measures the high-energy tail of the electrons. To reach the probe, they must have energies above the plasma potential VP, which can vary over the region of the measurement. By constructing a full distribution by applying the electron temperature Te obtained from the electron IV-curve and the VP obtained from the ion collecting RFEA or an emissive probe, a density measure of the hot electron distribution independent of VP can be obtained. The variation of the high-energy tail of the EEDF in both radial and axial directions, in the two different cases of 1) a purely expanding magnetic field nozzle, and 2) a more constricted one by applying current in a third, downstream coil was investigated. The electron densities and temperatures from the source are then compared to two analytic models of the downstream development of the electron density. The first model considers the development for a pure Boltzmann distribution while the second model takes an additional magnetic field expansion into account. A good match between the measured densities and the second model was found for both configurations. The RFEA probe also allows for directional measurement of the electron current to the probe. This property is used to compare the densities from the downstream and upstream directions, showing a much lower contribution of downstream electrons into the source for a purely expanding magnetic field in comparison to the confined magnetic field configuration.


Author(s):  
Asbjrn Engmark Espe ◽  
Thomas S. Haugan ◽  
Geir Mathisen

2021 ◽  
Vol 55 (13) ◽  
pp. 135201
Author(s):  
Ryoji Imai ◽  
Kazunori Takahashi

Abstract Two-dimensional characterization of the plasma plume is experimentally performed downstream of a magnetically steered radiofrequency plasma thruster, where the ion beam current, the ion saturation current, and the horizontal dynamic momentum flux, are measured by using the retarding field energy analyzer, the Langmuir probe, and the momentum vector measurement instrument, respectively, in addition to the previously measured horizontal thrust. The measurements show the deflections of the dynamic momentum flux including both the ions and the neutrals; the change in the direction of the dynamic momentum flux is consistent with the previously measured horizontal thrust. Furthermore, the ion saturation current profile implies that the deflected electron-diamagnetic-induced Lorentz force exerted to the magnetic nozzle contributes to the change in the thrust vector. Therefore, it is demonstrated that the deflections of both the dynamic momentum flux and the electron-diamagnetic-induced Lorentz force play an important role in the thrust vector control by the magnetic steering.


Author(s):  
О.В. Шереметьева

В работе используется маломодовая модель αΩ-динамо для моделирования режимов генерации магнитного поля при незначительных изменениях поля скорости вязкой жидкости. В рамках этой модели интенсивность α-эффекта регулируется процессом с памятью, который вводится в магнитогидродинамическую систему (МГД-система) как аддитивная поправка в виде функционала Z(t) от энергии поля. В качестве ядра J(t) функционала Z(t) выбрана функция, определяющая затухающие колебания с варьируемым коэффициентом затухания и постоянной частотой затухания, принятой равной единице. Исследование поведения магнитного поля проводится на больших временных масштабах, поэтому для численных расчётов используется перемасштабированная и обезразмеренная МГД-система, где в качестве единицы времени принято время диссипации магнитного поля (104 лет). Управляющими параметрами системы выступают число Рейнольдса и амплитуда α-эффекта, в которых заложена информация о крупномасштабном и турбулентном генераторах. Результаты численного моделирования режимов генерации магнитного поля при различных значениях коэффициента затухания и постоянной частоте затухания отражены на фазовой плоскости управляющих параметров. В работе исследуется вопрос о динамике изменения картины на фазовой плоскости в зависимости от значения коэффициента затухания. Проводится сравнение с результатами, полученными ранее при постоянной интенсивности α-эффекта и при изменении интенсивности α — эффекта, которое определялось функционалом Z(t) с показательным ядром и аналогичными значениями коэффициента затухания. In this paper, we use a low-mode αΩ-dynamo model to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. Within the framework of this model, an additive correction is introduced into the magnetohydrodynamic system to control the intensity of the α-effect in the form of a function Z(t) from the field energy. As the kernel J(t) of the function Z(t) is chosen the function that determines damped oscillations with the different values of the damping coefficient and a constant damping frequency taken equal to one. The study of the magnetic field behavior is carried out on a large time scales, therefore, for numerical calculations, a rescaled and dimensionless MHD-system is used, where the time of the magnetic field dissipation (104 years) is accepted as the unit of time. The main parameters of the system are the Reynolds number and the amplitude of the α-effect, which contains information about the large-scale and turbulent generators, respectively. According to the results of numerical simulation, an increase in the values of the damping coefficient is characterized an increase in the inhibition effect of the process Z(t) on the α-effect and decrease of the magnetic field divergence region on the plane of the main parameters.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 55
Author(s):  
Mohsen Al-Qhtani ◽  
Ghulam M. Mustafa ◽  
Nasheeta Mazhar ◽  
Sonia Bouzgarrou ◽  
Qasim Mahmood ◽  
...  

In ferromagnetic semiconductors, the coupling of magnetic ordering with semiconductor character accelerates the quantum computing. The structural stability, Curie temperature (Tc), spin polarization, half magnetic ferromagnetism and transport properties of ZnX2Se4 (X = Ti, V, Cr) chalcogenides for spintronic and thermoelectric applications are studied here by density functional theory (DFT). The highest value of Tc is perceived for ZnCr2Se4. The band structures in both spin channels confirmed half metallic ferromagnetic behavior, which is approved by integer magnetic moments (2, 3, 4) μB of Ti, V and Cr based spinels. The HM behavior is further measured by computing crystal field energy ΔEcrystal, exchange energies Δx(d), Δx (pd) and exchange constants (Noα and Noβ). The thermoelectric properties are addressed in terms of electrical conductivity, thermal conductivity, Seebeck coefficient and power factor in within a temperature range 0–400 K. The positive Seebeck coefficient shows p-type character and the PF is highest for ZnTi2Se4 (1.2 × 1011 W/mK2) among studied compounds.


Author(s):  
Y. Balytskyi ◽  
D. Hoyer ◽  
A. O. Pinchuk ◽  
L. L. Williams

Abstract Novel parameterizations are presented for monopole solutions to the static, spherically-symmetric vacuum field equations of five-dimensional general relativity. First proposed by Kaluza, 5D general relativity unites gravity and classical electromagnetism with a scalar field. These monopoles correspond to bodies carrying mass, electric charge, and scalar charge. The new parameterizations provide physical insight into the nature of electric charge and scalar field energy. The Reissner-Nordstr\"om limit is compared with alternate physical interpretations of the solution parameters. The new parameterizations explore the role of scalar field energy and the relation of electric charge to scalar charge. The Kaluza vacuum equations imply the scalar field energy density is the negative of the electric field energy density for all known solutions, so the total electric and scalar field energy of the monopole is zero. The vanishing of the total electric and scalar field energy density for vacuum solutions seems to imply the scalar field can be understood as a negative-energy foundation on which the electric field is built.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiangbo Zhang ◽  
Wei Liu ◽  
Fei Xiao ◽  
Taixin Liang ◽  
Shusen Zhao

In magnetic reconnection, magnetic lines break and reconnect to change their topology to a lower-energy state. This process can liberate stored magnetic field energy and accelerate particles during unsteady explosive events. Here, we report the observations of the magnetic reconnection and kink instability of plasma jet in single wire electrical explosion and their effect on propellant ignition. The results showed that the initial velocity of plasma was ∼2,000 m/s, and when the magnetic reconnection occurred, the velocity increased by ∼400–∼2,400 m/s. The evaluated Alfvén velocity was ∼500 m/s, the Alfvén time was ∼20 µs, and the Lundquist number S = 1.7 × 107. Based on these experimental results and model, the three-dimensional magnetic field topology and its evolution process was evaluated and presented. Furthermore, the magnetic reconnection occurred when its curvature reached a certain value due to the fact that the motion of the current sheet changes the topology of the magnetic field, and then, the plasma jet was accelerated and exhausted. The plasma jet angle was ∼50° in experiment 1, and it was consistent with the calculated results. The resulting magnetic reconnection plays an important role in propellant ignition, which enhances the ignition ability of wire electrical explosion. Furthermore, the results represent a key step towards resolving one of the most important problems of plasma physics and can be used to improve the understanding of wire array explosion and propellant ignition.


Sign in / Sign up

Export Citation Format

Share Document