In this paper, shear wave elastography was used to study and analyze the images of the breast in-depth and identify the abnormal image data. Sixty breast lesions were evaluated, and quantitative metrics were reproducible in the static and dynamic modes of shear wave elastography with a higher interobserver agreement in dynamic qualitative metrics than in the static mode. There were no statistically significant differences between the two modes of imaging in quantitative metrics, and quantitative metrics were more effective than qualitative metrics. Postoperative immunohistochemical expression of ER, PR, HER-2, Ki-67, molecular typing, pathological type, histological grading, and axillary lymph node status of breast cancer was obtained based on pathological results. The correlation between mass size, patient age, and WiMAX values of breast cancer masses was analyzed using Pearson correlation, and the differences in SWVmax values of breast cancer masses between different expressions of immunohistochemical parameters ER, PR, HER-2, Ki-67, and axillary lymph node status were compared using tests. The variables with correlations and differences were included in the multiple linear regression analysis to assess the factors influencing the SWVmax values. The performance of TDPM, SPM, and TSPM was compared using PVA body models with different freeze-thaw cycles. The results showed that TSPM performed better than SPM in general, and TDPM showed excellent performance because of high temporal resolution and low random error, especially when the number of freeze-thaw cycles increased and the hardness of the PVA body mold increased. Measurements at different depths of inhomogeneous body models also showed that the TDPM method was less affected by depth, and the results were more stable. Finally, the reliability of the shear wave velocity (SWS) measured by the TDPM and SPM methods was investigated using porcine ligament tissue, and the results showed that the mean values of SWS goodness of fit for TDPM and SPM were 0.94 and 0.87, respectively, and the estimated elastic modulus of TDPM was very close to the mechanical test results.