prothoracic gland
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 32)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 22 (24) ◽  
pp. 13465
Author(s):  
Lina Verbakel ◽  
Cynthia Lenaerts ◽  
Rania Abou El Asrar ◽  
Caroline Zandecki ◽  
Evert Bruyninckx ◽  
...  

Accurate control of innate behaviors associated with developmental transitions requires functional integration of hormonal and neural signals. Insect molting is regulated by a set of neuropeptides, which trigger periodic pulses in ecdysteroid hormone titers and coordinate shedding of the old cuticle during ecdysis. In the current study, we demonstrate that crustacean cardioactive peptide (CCAP), a structurally conserved neuropeptide described to induce the ecdysis motor program, also exhibits a previously unknown prothoracicostatic activity to regulate ecdysteroid production in the desert locust, Schistocerca gregaria. We identified the locust genes encoding the CCAP precursor and three G protein-coupled receptors that are activated by CCAP with EC50 values in the (sub)nanomolar range. Spatiotemporal expression profiles of the receptors revealed expression in the prothoracic glands, the endocrine organs where ecdysteroidogenesis occurs. RNAi-mediated knockdown of CCAP precursor or receptors resulted in significantly elevated transcript levels of several Halloween genes, which encode ecdysteroid biosynthesis enzymes, and in elevated ecdysteroid levels one day prior to ecdysis. Moreover, prothoracic gland explants exhibited decreased secretion of ecdysteroids in the presence of CCAP. Our results unequivocally identify CCAP as the first prothoracicostatic peptide discovered in a hemimetabolan species and reveal the existence of an intricate interplay between CCAP signaling and ecdysteroidogenesis.


Author(s):  
Xueya Cao ◽  
Marta Rojas ◽  
José Carlos Pastor-Pareja

Development involves tightly paced, reproducible sequences of events, yet it must adjust to conditions external to it, such as resource availability and organismal damage. A major mediator of damage-induced immune responses in vertebrates and insects is JAK/STAT signaling. At the same time, JAK/STAT activation by the Drosophila Upd cytokines is pleiotropically involved in normal development of multiple organs. Whether inflammatory and developmental roles of JAK/STAT intersect is unknown. Here, we show that JAK/STAT is active during development of the prothoracic gland (PG), the organ that controls metamorphosis onset through ecdysone production. Reducing JAK/STAT signaling decreased PG size and slightly advanced metamorphosis. Conversely, JAK/STAT hyperactivation, achieved through overexpression of pathway components or SUMOylation loss, caused PG hypertrophy and metamorphosis delay. Interestingly, tissue damage and tumors, known to secrete Upd cytokines, also activated JAK/STAT in the PG and delayed metamorphosis. Finally, we show that expression of transcription factor Apontic, a JAK/STAT target in the PG, recapitulates PG hypertrophy and metamorphosis delay. JAK/STAT damage signaling, therefore, regulates metamorphosis onset at least in part by coopting its developmental role in the PG.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sílvia Chafino ◽  
David Martín ◽  
Xavier Franch-Marro

AbstractAnimal development relies on a sequence of specific stages that allow the formation of adult structures with a determined size. In general, juvenile stages are dedicated mainly to growth, whereas last stages are devoted predominantly to the maturation of adult structures. In holometabolous insects, metamorphosis marks the end of the growth period as the animals stops feeding and initiate the final differentiation of the tissues. This transition is controlled by the steroid hormone ecdysone produced in the prothoracic gland. In Drosophila melanogaster different signals have been shown to regulate the production of ecdysone, such as PTTH/Torso, TGFß and Egfr signaling. However, to which extent the roles of these signals are conserved remains unknown. Here, we study the role of Egfr signaling in post-embryonic development of the basal holometabolous beetle Tribolium castaneum. We show that Tc-Egfr and Tc-pointed are required to induced a proper larval-pupal transition through the control of the expression of ecdysone biosynthetic genes. Furthermore, we identified an additional Tc-Egfr ligand in the Tribolium genome, the neuregulin-like protein Tc-Vein (Tc-Vn), which contributes to induce larval-pupal transition together with Tc-Spitz (Tc-Spi). Interestingly, we found that in addition to the redundant role in the control of pupa formation, each ligand possesses different functions in organ morphogenesis. Whereas Tc-Spi acts as the main ligand in urogomphi and gin traps, Tc-Vn is required in wings and elytra. Altogether, our findings show that in Tribolium, post-embryonic Tc-Egfr signaling activation depends on the presence of two ligands and that its role in metamorphic transition is conserved in holometabolous insects.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yunpo Zhao ◽  
Bo Gustav Lindberg ◽  
Shiva Seyedoleslami Esfahani ◽  
Xiongzhuo Tang ◽  
Stefano Piazza ◽  
...  

Abstract Background A number of cellular processes have evolved in metazoans that increase the proteome repertoire in relation to the genome, such as alternative splicing and translation recoding. Another such process, translational stop codon readthrough (SCR), generates C-terminally extended protein isoforms in many eukaryotes, including yeast, plants, insects, and humans. While comparative genome analyses have predicted the existence of programmed SCR in many species including humans, experimental proof of its functional consequences are scarce. Results We show that SCR of the Drosophila POU/Oct transcription factor Ventral veins lacking/Drifter (Vvl/Dfr) mRNA is prevalent in certain tissues in vivo, reaching a rate of 50% in the larval prothoracic gland. Phylogenetically, the C-terminal extension is conserved and harbors intrinsically disordered regions and amino acid stretches implied in transcriptional activation. Elimination of Vvl/Dfr translational readthrough by CRISPR/Cas9 mutagenesis changed the expression of a large number of downstream genes involved in processes such as chromatin regulation, neurogenesis, development, and immune response. As a proof-of-principle, we demonstrate that the C-terminal extension of Vvl/Dfr is necessary for correct timing of pupariation, by increasing the capacity to regulate its target genes. The extended Vvl/Dfr isoform acts in synergy with the transcription factor Molting defective (Mld) to increase the expression and biosynthesis of the steroid hormone ecdysone, thereby advancing pupariation. Consequently, late-stage larval development was prolonged and metamorphosis delayed in vvl/dfr readthrough mutants. Conclusions We demonstrate that translational recoding of a POU/Oct transcription factor takes place in a highly tissue-specific and temporally controlled manner. This dynamic and regulated recoding is necessary for normal expression of a large number of genes involved in many cellular and developmental processes. Loss of Vvl/Dfr translational readthrough negatively affects steroid hormone biosynthesis and delays larval development and progression into metamorphosis. Thus, this study demonstrates how SCR of a transcription factor can act as a developmental switch in a spatiotemporal manner, feeding into the timing of developmental transitions between different life-cycle stages. Graphical abstract


2021 ◽  
Vol 118 (35) ◽  
pp. e2101442118
Author(s):  
Yan Yang ◽  
Tujing Zhao ◽  
Zheng Li ◽  
Wenliang Qian ◽  
Jian Peng ◽  
...  

Insect development is cooperatively orchestrated by the steroid hormone ecdysone and juvenile hormone (JH). The polycomb repressive complex 2 (PRC2)–mediated histone H3K27 trimethylation (H3K27me3) epigenetically silences gene transcription and is essential for a range of biological processes, but the functions of H3K27 methylation in insect hormone action are poorly understood. Here, we demonstrate that H3K27 methylation–mediated repression of Hairy transcription in the larval prothoracic gland (PG) is required for ecdysone biosynthesis in Bombyx and Drosophila. H3K27me3 levels in the PG are dynamically increased during the last larval instar. H3K27me3 reduction induced by the down-regulation of PRC2 activity via inhibitor treatment in Bombyx or PG-specific knockdown of the PRC2 component Su(z)12 in Drosophila diminishes ecdysone biosynthesis and disturbs the larval–pupal transition. Mechanistically, H3K27 methylation targets the JH signal transducer Hairy to repress its transcription in the PG; PG-specific knockdown or overexpression of the Hairy gene disrupts ecdysone biosynthesis and developmental transition; and developmental defects caused by PG-specific Su(z)12 knockdown can be partially rescued by Hairy down-regulation. The application of JH mimic to the PG decreases both H3K27me3 levels and Su(z)12 expression. Altogether, our study reveals that PRC2-mediated H3K27 methylation at Hairy in the PG during the larval period is required for ecdysone biosynthesis and the larval–pupal transition and provides insights into epigenetic regulation of the crosstalk between JH and ecdysone during insect development.


2021 ◽  
Author(s):  
Francesca Destefanis ◽  
Valeria Manara ◽  
Stefania Santarelli ◽  
Sheri Zola ◽  
Marco Brambilla ◽  
...  

NOC1 is a nucleolar protein necessary in yeast for a correct transport of the large ribosomal subunit and polysome assembling. Here we shown that ubiquitous downregulation of NOC1 in Drosophila results in defective polysome formation and decreases the rate of protein synthesis. Reduction of NOC1 is detrimental for animal growth and adequate expression of NOC1 in organs, such as the prothoracic gland and in the fat body is necessary for proper organ function. In the imaginal discs downregulation of NOC1 results in small cells that die by apoptosis. This event is rescued in M/+ background suggesting that reduction of NOC1 favors cells to be outcompeted by wild type because of reduced protein synthesis. NOC1 downregulation induces the upregulation of the pro-apoptotic eiger-JNK signaling pathway, that results in the activation of DILP8 compensatory mechanism. Our results demonstrate that NOC1 in Drosophila plays an important role in the regulation of protein synthesis and cell survival, linking its function in the nucleolus to the control of animal growth and development.


2021 ◽  
Author(s):  
Suhrid Ghosh ◽  
Weihua Leng ◽  
Michaela Wilsch-Brauninger ◽  
Pierre Leopold ◽  
Suzanne Eaton

Insulin/IGF signalling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides (Ilp) is produced by brain neurosecretory cells and exerts systemic functions. Here, we describe the local uptake and storage of Ilps in the Corpora Cardiaca (CC), a group of alpha cell homolog that produces the glucagon-like hormone AKH. Dilp uptake relies on the expression of Impl2, an IGF-BP that accumulates in the CCs. During nutrient shortage, this specific reserve of Ilps is released and activates IIS in a paracrine manner in the prothoracic gland, securing accelerated entry into pupal development through the production of the steroid hormone ecdysone. We therefore uncover a sparing mechanism whereby local Ilp storage and release activates the production of steroids and ensures early developmental progression in adverse food conditions.


2021 ◽  
Vol 118 (27) ◽  
pp. e2023249118
Author(s):  
Brandon Mark ◽  
Liliana Bustos-González ◽  
Guadalupe Cascallares ◽  
Felipe Conejera ◽  
John Ewer

The daily rhythm of adult emergence of holometabolous insects is one of the first circadian rhythms to be studied. In these insects, the circadian clock imposes a daily pattern of emergence by allowing or stimulating eclosion during certain windows of time and inhibiting emergence during others, a process that has been described as “gating.” Although the circadian rhythm of insect emergence provided many of the key concepts of chronobiology, little progress has been made in understanding the bases of the gating process itself, although the term “gating” suggests that it is separate from the developmental process of metamorphosis. Here, we follow the progression through the final stages of Drosophila adult development with single-animal resolution and show that the circadian clock imposes a daily rhythmicity to the pattern of emergence by controlling when the insect initiates the final steps of metamorphosis itself. Circadian rhythmicity of emergence depends on the coupling between the central clock located in the brain and a peripheral clock located in the prothoracic gland (PG), an endocrine gland whose only known function is the production of the molting hormone, ecdysone. Here, we show that the clock exerts its action by regulating not the levels of ecdysone but that of its actions mediated by the ecdysone receptor. Our findings may also provide insights for understanding the mechanisms by which the daily rhythms of glucocorticoids are produced in mammals, which result from the coupling between the central clock in the suprachiasmatic nucleus and a peripheral clock located in the suprarenal gland.


2021 ◽  
Author(s):  
Lisa P Deliu ◽  
Deeshpaul Jadir ◽  
Abhishek Ghosh ◽  
Savraj S Grewal

The regulation of ribosome function is a conserved mechanism of growth control. While studies in single cell systems have defined how ribosomes contribute to cell growth, the mechanisms that link ribosome function to organismal growth are less clear. Here we explore this issue using Drosophila Minutes, a class of heterozygous mutants for ribosomal proteins (Rps). These animals exhibit a delay in larval development caused by decreased production of the steroid hormone ecdysone, the main regulator of larval maturation. We found that this developmental delay is not caused by decreases in either global ribosome numbers or translation rates. Instead, we show that they are due in part to loss of Rp function specifically in a subset of serotonin (5-HT) neurons that innervate the prothoracic gland to control ecdysone production. We found that these 5-HT neurons have defective secretion in Minute animals, and that overexpression of synaptic vesicle proteins in 5-HTergic cells can partially reverse the Minute developmental delay. These results identify a cell-specific role for ribosomal function in the neuroendocrine control of animal growth and development.


Sign in / Sign up

Export Citation Format

Share Document