algebraic counterpart
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Umberto Rivieccio ◽  
Ramon Jansana

Abstract The variety of quasi-Nelson algebras (QNAs) has been recently introduced and characterised in several equivalent ways: among others, as (1) the class of bounded commutative integral (but non-necessarily involutive) residuated lattices satisfying the Nelson identity, as well as (2) the class of (0, 1)-congruence orderable commutative integral residuated lattices. Logically, QNAs are the algebraic counterpart of quasi-Nelson logic, which is the (algebraisable) extension of the substructural logic ℱℒ ew (Full Lambek calculus with Exchange and Weakening) by the Nelson axiom. In the present paper, we collect virtually all the results that are currently known on QNAs, including solutions to certain questions left open in earlier publications. Furthermore, we extend our study to some subreducts of QNAs, that is, classes of algebras corresponding to fragments of the algebraic language obtained by eliding either the implication or the lattice operations.


2020 ◽  
Vol 57 (3) ◽  
pp. 321-371
Author(s):  
Tarek Sayed Ahmed

AbstractFix 2 < n < ω and let CAn denote the class of cyindric algebras of dimension n. Roughly CAn is the algebraic counterpart of the proof theory of first order logic restricted to the first n variables which we denote by Ln. The variety RCAn of representable CAns reflects algebraically the semantics of Ln. Members of RCAn are concrete algebras consisting of genuine n-ary relations, with set theoretic operations induced by the nature of relations, such as projections referred to as cylindrifications. Although CAn has a finite equational axiomatization, RCAn is not finitely axiomatizable, and it generally exhibits wild, often unpredictable and unruly behavior. This makes the theory of CAn substantially richer than that of Boolean algebras, just as much as Lω,ω is richer than propositional logic. We show using a so-called blow up and blur construction that several varieties (in fact infinitely many) containing and including the variety RCAn are not atom-canonical. A variety V of Boolean algebras with operators is atom canonical, if whenever 𝔄 is atomic, then its Dedekind-MacNeille completion, sometimes referred to as its minimal completion, is also in V. From our hitherto obtained algebraic results we show, employing the powerful machinery of algebraic logic, that the celebrated Henkin-Orey omitting types theorem, which is one of the classical first (historically) cornerstones of model theory of Lω,ω, fails dramatically for Ln even if we allow certain generalized models that are only locallly clasfsical. It is also shown that any class K such that , where CRCAn is the class of completely representable CAns, and Sc denotes the operation of forming dense (complete) subalgebras, is not elementary. Finally, we show that any class K such that is not elementary, where Sd denotes the operation of forming dense subalgebra.


2019 ◽  
Vol 20 (2) ◽  
pp. 241
Author(s):  
Rui Paiva ◽  
Regivan Santiago ◽  
Benjamín Bedregal

Interval Fuzzy Logic and Interval-valued Fuzzy Sets have been widely investigated. Some Fuzzy Logics were algebraically modelled by Peter Hájek as BL-algebras. What is the algebraic counterpart for the interval setting? It is known from literature that there is a incompatibility between some algebraic structures and its interval counterpart. This paper shows that such incompatibility is also present in the level of BL-algebras. Here we show both: (1) the impossiblity of match imprecision and the correctness of the underlying BLimplication and (2) some facts about the intervalization of BL-algebras.


2018 ◽  
Vol 28 (5) ◽  
pp. 973-999 ◽  
Author(s):  
Umberto Rivieccio ◽  
Paulo Maia ◽  
Achim Jung

Abstract A recent paper by Jakl, Jung and Pultr (2016, Electron. Notes Theor. Comput. Sci., 325, 201–219) succeeded for the first time in establishing a very natural link between bilattice logic and the duality theory of d-frames and bitopological spaces. In this paper we further exploit, extend and investigate this link from an algebraic and a logical point of view. In particular, we introduce classes of algebras that extend bilattices, d-frames and N4-lattices (the algebraic counterpart of Nelson’s paraconsistent logic) to a setting in which the negation is not necessarily involutive, and we study corresponding logics. We provide product representation theorems for these algebras, as well as completeness, algebraizability (and some non-algebraizability) results for the corresponding logics.


2018 ◽  
Vol 28 (02) ◽  
pp. 179-206 ◽  
Author(s):  
Marco D’Anna ◽  
Pedro A. García-Sánchez ◽  
Vincenzo Micale ◽  
Laura Tozzo

Value semigroups of non-irreducible singular algebraic curves and their fractional ideals are submonoids of [Formula: see text] that are closed under infimums, have a conductor and fulfill a special compatibility property on their elements. Monoids of [Formula: see text] fulfilling these three conditions are known in the literature as good semigroups and there are examples of good semigroups that are not realizable as the value semigroup of an algebraic curve. In this paper, we consider good semigroups independently from their algebraic counterpart, in a purely combinatorial setting. We define the concept of good system of generators, and we show that minimal good systems of generators are unique. Moreover, we give a constructive way to compute the canonical ideal and the Arf closure of a good subsemigroup when [Formula: see text].


10.29007/p4ch ◽  
2018 ◽  
Author(s):  
Ramon Jansana ◽  
Umberto Rivieccio

N4-lattices are the algebraic semantics of paraconsistent Nelson logic, which was introduced as an inconsistency-tolerant counterpart of the better-known logic of Nelson. Paraconsistent Nelson logic combines interesting features of intuitionistic, classical and many-valued logics (e.g., Belnap-Dunn four-valued logic); recent work has shown that it can also be seen as one member of the wide family of substructural logics.The work we present here is a contribution towards a better topological understanding of the algebraic counterpart of paraconsistent Nelson logic, namely a variety of involutive lattices called N4-lattices.


2016 ◽  
Vol 09 (04) ◽  
pp. 1650087
Author(s):  
Ivan Chajda ◽  
Helmut Länger

We investigate relational systems endowed with an involution inverting couples of related elements. The concept of a so-called complemented or orthomodular relational system is introduced as a generalization of a complemented or orthomodular lattice, respectively. To every one of the mentioned relational systems [Formula: see text] there is assigned certain algebra [Formula: see text] which can be considered as an algebraic counterpart to [Formula: see text]. The paper is devoted to the relations between these relational systems and the assigned algebras. It is shown that these algebras have some congruence properties.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750137
Author(s):  
Xiaofan Zhao ◽  
Guohua Liu ◽  
Shuanhong Wang

In this paper, in looking for the weak Hopf algebraic counterpart of pseudosymmetric braidings, we introduce the concept of a pseudotriangular weak Hopf algebra, which is a quasitriangular weak Hopf algebra satisfying an extra condition. Then, we investigate the question, when a quasitriangular weak Hopf algebra is pseudotriangular. As an application, we study a special class of pseudotriangular weak Hopf algebras, under the name almost-triangular weak Hopf algebras and list some nontrivial examples. Finally, in order to construct more examples of pseudotriangular weak Hopf algebras, we show that the pseudosymmetry of the Yetter–Drinfeld category [Formula: see text] is determined by the commutativity and cocommutativity of [Formula: see text], where [Formula: see text] is a weak Hopf algebra with a bijective antipode.


2016 ◽  
Vol 4 ◽  
Author(s):  
RENZO CAVALIERI ◽  
SIMON HAMPE ◽  
HANNAH MARKWIG ◽  
DHRUV RANGANATHAN

We study moduli spaces of rational weighted stable tropical curves, and their connections with Hassett spaces. Given a vector $w$ of weights, the moduli space of tropical $w$-stable curves can be given the structure of a balanced fan if and only if $w$ has only heavy and light entries. In this case, the tropical moduli space can be expressed as the Bergman fan of an explicit graphic matroid. The tropical moduli space can be realized as a geometric tropicalization, and as a Berkovich skeleton, its algebraic counterpart. This builds on previous work of Tevelev, Gibney and Maclagan, and Abramovich, Caporaso and Payne. Finally, we construct the moduli spaces of heavy/light weighted tropical curves as fibre products of unweighted spaces, and explore parallels with the algebraic world.


Author(s):  
DANIEL DELBOURGO ◽  
ANTONIO LEI

AbstractLet$E_{/{\mathbb{Q}}}$be a semistable elliptic curve, andp≠ 2 a prime of bad multiplicative reduction. For each Lie extension$\mathbb{Q}$FT/$\mathbb{Q}$with Galois groupG∞≅$\mathbb{Z}$p⋊$\mathbb{Z}$p×, we constructp-adicL-functions interpolating Artin twists of the Hasse–WeilL-series of the curveE. Through the use of congruences, we next prove a formula for the analytic λ-invariant over the false Tate tower, analogous to Chern–Yang Lee's results on its algebraic counterpart. If one assumes the Pontryagin dual of the Selmer group belongs to the$\mathfrak{M}_{\mathcal{H}}$(G∞)-category, the leading terms of its associated Akashi series can then be computed, allowing us to formulate a non-commutative Iwasawa Main Conjecture in the multiplicative setting.


Sign in / Sign up

Export Citation Format

Share Document