accuracy of approximation
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3182
Author(s):  
Gabriela Cristescu ◽  
Vlad-Florin Drăgoi ◽  
Sorin Horaţiu Hoară

Some properties of generalized convexity for sets and functions are identified in case of the reliability polynomials of two dual minimal networks. A method of approximating the reliability polynomials of two dual minimal network is developed based on their mutual complementarity properties. The approximating objects are from the class of quadratic spline functions, constructed based on both interpolation conditions and shape knowledge. It is proved that the approximant objects preserve both the high-order convexity and some extremum properties of the exact reliability polynomials. It leads to pointing out the area of the network where the maximum number of paths is achieved. Numerical examples and simulations show the performance of the algorithm, both in terms of low complexity, small error and shape preserving. Possibilities of increasing the accuracy of approximation are discussed.


2021 ◽  
Vol 2021 (4) ◽  
pp. 89-103
Author(s):  
T.H. Smila ◽  
◽  
L.L. Pecherytsia ◽  

The current level of the design and use of new-generation spacecraft calls for a maximally automated ballistics support of engineering developments. An integral part of the solution of this problem is the development of an effective tool to adapt discrete functions of gas-dynamic characteristics to the solution of various problems that arise in the development and use of space complexes. Simplifying the use of bulky information arrays together with improving the accuracy of approximation of key coefficients will significantly improve the ballistics support quality. The aim of this work is to choose an optimum method for the approximation of a discrete function of two variable spacecraft aerodynamic characteristics. Based on the analysis of the advantages and drawbacks of basic methods of approximation by two fitting criteria: the maximum error and the root-mean-square deviation, recommendations on this choice were made. The methods were assessed by the example of the aerodynamic coefficients of the Sich-2M spacecraft’s simplified geometrical model tabulated as a function of the spacecraft orientation angles relative to the incident flow velocity. Multiparameter numerical studies were conducted for different approximation methods with varying the parameters of the approximation types under consideration and the approximation grid density. It was found that increasing the number of nodes of an input array does not always improve the accuracy of approximation. The node arrangement exerts a greater effect on the approximation quality. It was established that the most easily implementable method among those considered is a step interpolation, whose advantages are simplicity, quickness, and limitless possibilities in accuracy improvement, while its significant drawbacks are the lack of an analytical description and the dependence of the accuracy on the grid density. It was shown that spline functions feature the best approximating properties in comparison with other mathematical models. A polynomial approximation or any approximation by a general form function provide an analytical description with a single approximating function, but their accuracy of approximation is not so high as that provided by splines. It was found that there exists no approximation method that would be best by all criteria taken together: each method has some advantages, but at the same time, it has significant drawbacks too. An optimum approximation method is chosen according to the features of the problem, the priorities in approximation requirements, the required degree of approximation, and the initial data organization method.


2021 ◽  
pp. 1-36
Author(s):  
Rizwan Gul ◽  
Muhammad Shabir

Pawlak’s rough set theory based on single granulation has been extended to multi-granulation rough set structure in recent years. Multi-granulation rough set theory has become a flouring research direction in rough set theory. In this paper, we propose the notion of (α, β)-multi-granulation bipolar fuzzified rough set ((α, β)-MGBFRSs). For this purpose, a collection of bipolar fuzzy tolerance relations has been used. In the framework of multi-granulation, we proposed two types of (α, β)-multi-granulation bipolar fuzzified rough sets model. One is called the optimistic (α, β)-multi-granulation bipolar fuzzified rough sets ((α, β) o-MGBFRSs) and the other is called the pessimistic (α, β)-multi-granulation bipolar fuzzified rough sets ((α, β) p-MGBFRSs). Subsequently, a number of important structural properties and results of proposed models are investigated in detail. The relationships among the (α, β)-MGBFRSs, (α, β) o-MGBFRSs and (α, β) p-MGBFRSs are also established. In order to illustrate our proposed models, some examples are considered, which are helpful for applying this theory in practical issues. Moreover, several important measures associated with (α, β)-multi-granulation bipolar fuzzified rough set like the measure of accuracy, the measure of precision, and accuracy of approximation are presented. Finally, we construct a new approach to multi-criteria group decision-making method based on (α, β)-MGBFRSs, and the validity of this technique is illustrated by a practical application. Compared with the existing results, we also expound its advantages.


2020 ◽  
Vol 24 (4) ◽  
pp. 19-26
Author(s):  
Krzysztof Oprzędkiewicz ◽  
Maciej Rosół ◽  
Jakub Żegleń-Włodarczyk

The paper presents the implementation of the basic fractional order element sγ on the STM32 microcontroller platform. The implementation employs the typical CFE and FOBD approximations, the accuracy of approximation as well as duration of calculations are experimentally tested. Microcontroller implementation of fractional order elements is known; however, real-time tests of such implementations have been not presented yet. Results of experiments show that both methods can be implemented at the considered platform. The FOBD approximation is more accurate, but the CFE one is faster. The presented experimental results prove that the STM32F7 family processor could be used to develop the embedded fractional-order control systems for a broad class of linear and nonlinear dynamic systems. This is crucial during the implementation of the fractional-order control in the hard real-time or embedded systems.


Author(s):  
Sergey V. Lazarenko ◽  
Andrey A. Kostoglotov ◽  
Alexander A. Agapov ◽  
Zoya V. Lyaschenko

A quasi-optimal multimode control law is developed on the basis of the condition for the maximum of the function of generalized power, taking into account the principle of exemption for control objects that can be represented by Lagrange equations of the second kind. A comparative analysis of the obtained solution was carried out on the basis of mathematical modeling. It is found that the modes of the proposed control law provide a high accuracy of approximation to the optimal speed laws and Fuller's laws with the possibility of eliminating more frequent switching. The developed control law by changing the switching line makes it possible to implement a wide range of linear and nonlinear operating modes, which allows the resulting control law to be classified as multimode.


2020 ◽  
Vol 25 (4) ◽  
Author(s):  
Gabija Liaudanskaitė ◽  
Vydas Čekanavičius

The sum of symmetric three-point 1-dependent nonidentically distributed random variables is approximated by a compound Poisson distribution. The accuracy of approximation is estimated in the local and total variation norms. For distributions uniformly bounded from zero,the accuracy of approximation is of the order O(n–1). In the general case of triangular arrays of identically distributed summands, the accuracy is at least of the order O(n–1/2). Nonuniform estimates are obtained for distribution functions and probabilities. The characteristic functionmethod is used.  


2020 ◽  
Vol 210 ◽  
pp. 01003
Author(s):  
Andrey Kostoglotov ◽  
Sergey Lazarenko ◽  
Alexander Agapov ◽  
Zoya Lyashchenko

A quasi-optimal control law is developed based on the condition for the maxi-mum of the generalized power function taking into account the stationarity of the Hamiltonian on the switching line for control objects that can be represented by the Lagrange equations of the second kind. The comparative analysis is carried out based on the mathematical simulation using the optimal nonlinear control laws with respect to several criteria. We found that the modes of the proposed control law provide high accuracy of approximation to the optimal performance laws and the Fuller laws, reducing energy costs for control by eliminating more frequent switching. The choice of the parameters of the developed control law makes it possible to implement a wide range of both nonlinear and linear operating modes, which allows to classify the obtained control law as multimode law.


Sign in / Sign up

Export Citation Format

Share Document