proline rich region
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 20)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Asael Nunez ◽  
Shimpei Takita ◽  
Sanae Imanishi ◽  
Yoshikazu Imanishi

The photoreceptor outer segment (OS) is a highly specialized organelle for light absorption. Precise localization of OS resident proteins is important for photoreceptor function. Molecular mechanisms underlying OS targeting of proteins and their mislocalization, which frequently causes inherited retinal degeneration, have been intensely investigated. Rhodopsin, a major protein of the rod OS, is often mislocalized to the inner segment (IS) plasma membrane of rod photoreceptors in retinal degeneration patients. In the Xenopus laevis model of retinitis pigmentosa, we previously found that Na+/K+-ATPase (NKA), a major IS protein, was downregulated. The Imanishi lab recently created a novel retinitis pigmentosa mouse model carrying the Q344ter rhodopsin gene mutation, which causes rhodopsin mislocalization to the rod IS plasma membrane. In this summer program, we examined whether this mouse model also displays reduced NKA expression in the rod IS’s by immunohistochemistry at postnatal day 30. Although NKA was properly localized to the IS plasma membrane, expression of NKA was reduced in mutant photoreceptors compared to wildtype cells. In the rod OS, activation of rhodopsin eventually leads to the closure of the cyclic nucleotide gated (CNG) channel, which consists of a and b subunits. This channel localizes to the OS plasma membrane, and the N-terminal proline-rich region (R) of the b subunit (CNGb1) may be important for its interaction with peripherin (PRPH2), another OS resident protein. Currently, it is not well understood whether this interaction is necessary for the proper localization of CNGb1 to the OS plasma membrane. Using Xenopus as a model, we studied the role of the N-terminal proline-rich region in properly localizing CNGb1 to the OS plasma membrane by generating transgenic CNGb1(DR) tadpoles that expressed CNGb1(DR) in rods under the control of a rhodopsin promoter. We found that CNGb1(DR) properly localized to the OS plasma membrane. 


2021 ◽  
Vol 17 (8) ◽  
pp. e1009902
Author(s):  
Anthony Davidson ◽  
Joe Tyler ◽  
Peter Hume ◽  
Vikash Singh ◽  
Vassilis Koronakis

The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor β-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Lionel K. K. Tan ◽  
Mark Reglinski ◽  
Daryl Teo ◽  
Nada Reza ◽  
Lucy E. M. Lamb ◽  
...  

AbstractHighly pathogenic emm1 Streptococcus pyogenes strains secrete the multidomain Streptococcal inhibitor of complement (SIC) that binds and inactivates components of the innate immune response. We aimed to determine if naturally occurring or vaccine-induced antibodies to SIC are protective against invasive S. pyogenes infection. Immunisation with full-length SIC protected mice against systemic bacterial dissemination following intranasal or intramuscular infection with emm1 S. pyogenes. Vaccine-induced rabbit anti-SIC antibodies, but not naturally occurring human anti-SIC antibodies, enhanced bacterial clearance in an ex vivo whole-blood assay. SIC vaccination of both mice and rabbits resulted in antibody recognition of all domains of SIC, whereas naturally occurring human anti-SIC antibodies recognised the proline-rich region of SIC only. We, therefore, propose a model whereby natural infection with S. pyogenes generates non-protective antibodies against the proline-rich region of SIC, while vaccination with full-length SIC permits the development of protective antibodies against all SIC domains.


Author(s):  
Emmanuel Prikas ◽  
Holly Ahel ◽  
Kristie Stefanoska ◽  
Prita Riana Asih ◽  
Alexander Volkerling ◽  
...  

The microtubule-associated protein tau is a key factor in neurodegenerative proteinopathies and is predominantly found in the neuronal axon. However, somatodendritic localization of tau occurs for a subset of pathological and physiologic tau. Dendritic tau can localize to post-synapses where it interacts with proteins of the post-synaptic density (PSD) protein PSD-95, a membrane-associated guanylate kinase (MAGUK) scaffold factor for organization of protein complexes within the PSD, to mediate downstream signals. The sub-molecular details of this interaction, however, remain unclear. Here, we use interaction mapping in cultured cells to demonstrate that tau interacts with the guanylate kinase (GUK) domain in the C-terminal region of PSD-95. The PSD-95 GUK domain is required and sufficient for a complex with full-length human tau. Mapping the interaction of the MAGUK core on tau revealed the microtubule binding repeats 2 and 3 and the proline-rich region contribute to this interaction, while the N- and C-terminal regions of tau inhibit interaction. These results reveal intramolecular determinants of the protein complex of tau and PSD-95 and increase our understanding of tau interactions regulating neurotoxic signaling at the molecular level.


2020 ◽  
Vol 16 (12) ◽  
pp. e1009061
Author(s):  
Elena Mata ◽  
Damien Farrell ◽  
Ruoyao Ma ◽  
Santiago Uranga ◽  
Ana Belen Gomez ◽  
...  

Species belonging to the Mycobacterium tuberculosis Complex (MTBC) show more than 99% genetic identity but exhibit distinct host preference and virulence. The molecular genetic changes that underly host specificity and infection phenotype within MTBC members have not been fully elucidated. Here, we analysed RD900 genomic region across MTBC members using whole genome sequences from 60 different MTBC strains so as to determine its role in the context of MTBC evolutionary history. The RD900 region comprises two homologous genes, pknH1 and pknH2, encoding a serine/threonine protein kinase PknH flanking the tbd2 gene. Our analysis revealed that RD900 has been independently lost in different MTBC lineages and different strains, resulting in the generation of a single pknH gene. Importantly, all the analysed M. bovis and M. caprae strains carry a conserved deletion within a proline rich-region of pknH, independent of the presence or absence of RD900. We hypothesized that deletion of pknH proline rich-region in M. bovis may affect PknH function, having a potential role in its virulence and evolutionary adaptation. To explore this hypothesis, we constructed two M. bovis ‘knock-in’ strains containing the M. tuberculosis pknH gene. Evaluation of their virulence phenotype in mice revealed a reduced virulence of both M. bovis knock-in strains compared to the wild type, suggesting that PknH plays an important role in the differential virulence phenotype of M. bovis vs M. tuberculosis.


2020 ◽  
Vol 11 ◽  
Author(s):  
John C. Hook ◽  
Vitan Blagotinsek ◽  
Jan Pané-Farré ◽  
Devid Mrusek ◽  
Florian Altegoer ◽  
...  

Flagella are bacterial organelles of locomotion. Their biogenesis is highly coordinated in time and space and relies on a specialized flagellar type III secretion system (fT3SS) required for the assembly of the extracellular hook, rod, and filament parts of this complex motor device. The fT3SS protein FlhB switches secretion substrate specificity once the growing hook reaches its determined length. Here we present the crystal structure of the cytoplasmic domain of the transmembrane protein FlhB. The structure visualizes a so-far unseen proline-rich region (PRR) at the very C-terminus of the protein. Strains lacking the PRR show a decrease in flagellation as determined by hook- and filament staining, indicating a role of the PRR during assembly of the hook and filament structures. Phylogenetic analysis shows that the PRR is a primary feature of FlhB proteins of flagellated beta- and gamma-proteobacteria. Taken together, our study adds another layer of complexity and organismic diversity to the process of flagella biogenesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adriana Savastano ◽  
Garima Jaipuria ◽  
Loren Andreas ◽  
Eckhard Mandelkow ◽  
Markus Zweckstetter

AbstractThe aggregation of hyperphosphorylated tau into amyloid fibrils is closely linked to the progression of Alzheimer’s disease. To gain insight into the link between amyloid structure and disease, the three-dimensional structure of tau fibrils has been studied using solid-state NMR (ssNMR) and cryogenic electron microscopy (cryo-EM). The proline-rich region of tau remains poorly defined in the context of tau amyloid structures, despite the clustering of several phosphorylation sites, which have been associated with Alzheimer’s disease. In order to gain insight into the contribution of the proline-rich region P2 of tau to amyloid fibrils, we studied in vitro aggregated amyloid fibrils of tau constructs, which contain both the proline-rich region P2 and the pseudo-repeats. Using ssNMR we show that the sequence $$^{225}{\text {KVAVVRT}}^{231}$$ 225 KVAVVRT 231 , the most hydrophobic patch within the P2 region, loses its flexibility upon formation of amyloid fibrils. The data suggest a contribution of the P2 region to tau amyloid fibril formation, which might account for some of the unassigned electron density in cryo-EM studies of tau fibrils and could be modulated by tau phosphorylation at the disease-associated AT180 epitope T231/S235.


2020 ◽  
Author(s):  
Lionel K. K. Tan ◽  
Mark Reglinski ◽  
Daryl Teo ◽  
Nada Reza ◽  
Lucy E. M. Lamb ◽  
...  

AbstractHighly pathogenic emm1 Streptococcus pyogenes strains secrete the multidomain Streptococcal inhibitor of complement (SIC) that binds and inactivates components of the innate immune response. We aimed to determine if naturally occurring or vaccine-induced antibodies to SIC are protective against invasive S. pyogenes infection. Immunisation with full length SIC protected mice against systemic bacterial dissemination following intranasal or intramuscular infection with emm1 S. pyogenes. Vaccine-induced rabbit anti-SIC antibodies, but not naturally occurring human anti-SIC antibodies, enhanced bacterial clearance in an ex vivo whole blood assay. SIC vaccination of both mice and rabbits resulted in antibody recognition of all domains of SIC, whereas naturally occurring human anti-SIC antibodies recognised the proline-rich region of SIC only. We therefore propose a model whereby natural infection with S. pyogenes generates non-protective antibodies against the proline-rich region of SIC, while vaccination with full length SIC permits development of protective antibodies against all SIC domains.


Author(s):  
Hrushikesh Dixit ◽  
Selvaa Kumar C ◽  
Ruchi Chaudhary ◽  
Divya Thaker ◽  
Nikhil Gadewal ◽  
...  

Background: Tau is a disordered Microtubule Associated Protein (MAP) which prefers to bind and stabilize microtubules. Phosphorylation of tau in particular enhances tau-tubulin interaction which otherwise detaches from tubulin during hyperphosphorylation. The reason behind their destabilization, detachment and the role of β subunit (from microtubule) and the projection domain (Tau) in microtubule stability remains elusive till date. Thus, a complete 3D structural investigation of tau protein is much needed to address these queries as the existing crystal structures are in fragments and quite limited. Methods: In this study, the modelled human tau protein was subjected to phosphorylation and hyperphosphorylation which were later considered for docking with microtubules (βα subunits-inter dimer) and vinblastine. Results: Phosphorylated tau protein interacts with both α- and β subunits. But stronger bonding was with α- compared to β subunits. Regarding β subunit, proline rich loop and projection domain actively participated in tau binding. Interestingly, hyperphosphorylation of tau increases MAP domain flexibility which ultimately results in tau detachment, the main reason behind tangle formation in Alzheimer’s disease. Conclusion: This study being the first of its kind emphasizes the role of projection domain and proline rich region of β-subunit in stabilizing the tau-tubulin interaction and also the effect of hyperphosphorylation in protein-protein and protein-drug binding.


Sign in / Sign up

Export Citation Format

Share Document