solution bound
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mesfin Mekuria Woldaregay ◽  
Gemechis File Duressa

In this article, singularly perturbed parabolic differential difference equations are considered. The solution of the equations exhibits a boundary layer on the right side of the spatial domain. The terms containing the advance and delay parameters are approximated using Taylor series approximation. The resulting singularly perturbed parabolic PDEs are solved using the Crank–Nicolson method in the temporal discretization and nonstandard finite difference method in the spatial discretization. The existence of a unique discrete solution is guaranteed using the discrete maximum principle. The uniform stability of the scheme is investigated using solution bound. The uniform convergence of the scheme is discussed and proved. The scheme converges uniformly with the order of convergence O N − 1 + Δ t 2 , where N is number of subintervals in spatial discretization and Δ t is mesh length in temporal discretization. Two test numerical examples are considered to validate the theoretical findings of the scheme.


Author(s):  
Jingjing Ma ◽  
Daming Zhu ◽  
Haitao Jiang ◽  
Binhai Zhu
Keyword(s):  

2021 ◽  
pp. 6-6
Author(s):  
Mesfin Woldaregay ◽  
Worku Aniley ◽  
Gemechis Duressa

This paper deals with solution methods for singularly perturbed delay differential equations having delay on the convection and reaction terms. The considered problem exhibits an exponential boundary layer on the left or right side of the domain. The terms with the delay are treated using Taylor?s series approximation and the resulting singularly perturbed boundary value problem is solved using a specially designed exponentially finite difference method. The stability of the scheme is analysed and investigated using a comparison principle and solution bound. The formulated scheme converges uniformly with linear order of convergence. The theoretical findings are validated using three numerical test examples.


Filomat ◽  
2021 ◽  
Vol 35 (7) ◽  
pp. 2383-2401
Author(s):  
Mesfin Woldaregay ◽  
Gemechis Duressa

This paper deals with numerical treatment of singularly perturbed parabolic differential equations having delay on the zeroth and first order derivative terms. The solution of the considered problem exhibits boundary layer behaviour as the perturbation parameter tends to zero. The equation is solved using ?-method in temporal discretization and exponentially fitted finite difference method in spatial discretization. The stability of the scheme is proved by using solution bound technique by constructing barrier functions. The parameter uniform convergence analysis of the scheme is carried out and it is shown to be accurate of order O(N-2/N-1+c?+(?t)2) for the case ?= 1/2, where N is the number of mesh points in spatial discretization and ?t is the mesh size in temporal discretization. Numerical examples are considered for validating the theoretical analysis of the scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Mesfin Mekuria Woldaregay ◽  
Gemechis File Duressa

This paper deals with numerical treatment of singularly perturbed differential difference equations involving mixed small shifts on the reaction terms. The highest-order derivative term in the equation is multiplied by a small perturbation parameter ε taking arbitrary values in the interval 0,1 . For small values of ε , the solution of the problem exhibits exponential boundary layer on the left or right side of the domain and the derivatives of the solution behave boundlessly large. The terms having the shifts are treated using Taylor’s series approximation. The resulting singularly perturbed boundary value problem is solved using exponentially fitted operator FDM. Uniform stability of the scheme is investigated and analysed using comparison principle and solution bound. The formulated scheme converges uniformly with linear order before Richardson extrapolation and quadratic order after Richardson extrapolation. The theoretical analysis of the scheme is validated using numerical test examples for different values of ε and mesh number N .


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Li Wang

The continuous coupled algebraic Riccati equation (CCARE) has wide applications in control theory and linear systems. In this paper, by a constructed positive semidefinite matrix, matrix inequalities, and matrix eigenvalue inequalities, we propose a new two-parameter-type upper solution bound of the CCARE. Next, we present an iterative algorithm for finding the tighter upper solution bound of CCARE, prove its boundedness, and analyse its monotonicity and convergence. Finally, corresponding numerical examples are given to illustrate the superiority and effectiveness of the derived results.


Author(s):  
Yufeng Xu

The comparison principle of fractional differential equations is discussed in this paper. We obtain two kinds of comparison principle which are related to the functions in the right hand side of equations, and the order of fractional derivative, respectively. By using the comparison principle, the boundedness of fractional Lorenz system and fractional Lorenz-like system are studied numerically. Numerical simulations are carried out which demonstrate our theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document