energy surplus
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 3)

Desalination ◽  
2021 ◽  
Vol 515 ◽  
pp. 115216
Author(s):  
N. Melián-Martel ◽  
B. del Río-Gamero ◽  
Julieta Schallenberg-Rodríguez

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5586
Author(s):  
Marcin Wysokiński ◽  
Bogdan Klepacki ◽  
Piotr Gradziuk ◽  
Magdalena Golonko ◽  
Piotr Gołasa ◽  
...  

Climate change and negative environmental effects are results of a simplified understanding of management processes, i.e., assuming economic effects as the basis for development, without taking into account external costs. Economically efficient facilities are not always environmentally efficient. Due to the existing conflict of economic and environmental goals, it seems necessary to look for measures that would include both economic and environmental elements in their structure. The above doubts were the main reasons for undertaking this research. One of the important sectors of the economy accepted for research, where energy is an essential factor of production, is agriculture. Agricultural production is very diversified both in terms of inputs and final products. Depending on the production direction, the processes of conversion of energy accumulated in inputs into energy accumulated in commodity products have different natures and relationships. Taking into account the importance of agriculture in the national economy and the current environmental needs of the world, the types of farms generating energy surplus and those in which the surplus is the least cost-consuming were indicated. The research used the economic and energy efficiency index, which makes it possible to jointly assess technical and economic efficiency. Assuming the need to produce food with low energy consumption and a positive energy balance, it is reasonable to develop a support system for those farms showing the highest economic and energy efficiency indicators.


2021 ◽  
Vol 22 (16) ◽  
pp. 8472
Author(s):  
Senem Aykul ◽  
Jordan Maust ◽  
Vijayalakshmi Thamilselvan ◽  
Monique Floer ◽  
Erik Martinez-Hackert

Adipose tissues (AT) expand in response to energy surplus through adipocyte hypertrophy and hyperplasia. The latter, also known as adipogenesis, is a process by which multipotent precursors differentiate to form mature adipocytes. This process is directed by developmental cues that include members of the TGF-β family. Our goal here was to elucidate, using the 3T3-L1 adipogenesis model, how TGF-β family growth factors and inhibitors regulate adipocyte development. We show that ligands of the Activin and TGF-β families, several ligand traps, and the SMAD1/5/8 signaling inhibitor LDN-193189 profoundly suppressed 3T3-L1 adipogenesis. Strikingly, anti-adipogenic traps and ligands engaged the same mechanism of action involving the simultaneous activation of SMAD2/3 and inhibition of SMAD1/5/8 signaling. This effect was rescued by the SMAD2/3 signaling inhibitor SB-431542. By contrast, although LDN-193189 also suppressed SMAD1/5/8 signaling and adipogenesis, its effect could not be rescued by SB-431542. Collectively, these findings reveal the fundamental role of SMAD1/5/8 for 3T3-L1 adipogenesis, and potentially identify a negative feedback loop that links SMAD2/3 activation with SMAD1/5/8 inhibition in adipogenic precursors.


Gases ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 80-91
Author(s):  
Linda Barelli ◽  
Gianni Bidini ◽  
Panfilo Andrea Ottaviano ◽  
Michele Perla

Time mismatch between renewable energy production and consumption, grid congestion issues, and consequent production curtailment lead to the need for energy storage systems to allow for a greater renewable energy sources share in future energy scenarios. A power-to-liquefied synthetic natural gas system can be used to convert renewable energy surplus into fuel for heavy duty vehicles, coupling the electric and transportation sectors. The investigated system originates from power-to-gas technology, based on water electrolysis and CO2 methanation to produce a methane rich mixture containing H2, coupled with a low temperature gas upgrading section to meet the liquefied natural gas requirements. The process uses direct air CO2 capture to feed the methanation section; mol sieve dehydration and cryogenic distillation are implemented to produce a liquefied natural gas quality mixture. The utilization of this fuel in heavy duty vehicles can reduce greenhouse gases emissions if compared with diesel and natural gas, supporting the growth of renewable fuel consumption in an existing market. Here, the application of power-to-liquefied synthetic natural gas systems is investigated at a national level for Italy by 2040, assessing the number of plants to be installed in order to convert the curtailed energy, synthetic fuel production, and consequent avoided greenhouse gases emissions through well-to-wheel analysis. Finally, plant investment cost is preliminarily investigated.


2021 ◽  
Vol 321 ◽  
pp. 124423
Author(s):  
Laura Rovira-Alsina ◽  
M. Dolors Balaguer ◽  
Sebastià Puig

Author(s):  
Sheida Stephens ◽  
Radhakrishnan Mahadevan ◽  
D. Grant Allen

Microbial production of chemicals using renewable feedstocks such as glucose has emerged as a green alternative to conventional chemical production processes that rely primarily on petroleum-based feedstocks. The carbon footprint of such processes can further be reduced by using engineered cells that harness solar energy to consume feedstocks traditionally considered to be wastes as their carbon sources. Photosynthetic bacteria utilize sophisticated photosystems to capture the energy from photons to generate reduction potential with such rapidity and abundance that cells often cannot use it fast enough and much of it is lost as heat and light. Engineering photosynthetic organisms could enable us to take advantage of this energy surplus by redirecting it toward the synthesis of commercially important products such as biofuels, bioplastics, commodity chemicals, and terpenoids. In this work, we review photosynthetic pathways in aerobic and anaerobic bacteria to better understand how these organisms have naturally evolved to harness solar energy. We also discuss more recent attempts at engineering both the photosystems and downstream reactions that transfer reducing power to improve target chemical production. Further, we discuss different methods for the optimization of photosynthetic bioprocess including the immobilization of cells and the optimization of light delivery. We anticipate this review will serve as an important resource for future efforts to engineer and harness photosynthetic bacteria for chemical production.


2020 ◽  
Author(s):  
Senem Aykul ◽  
Jordan Maust ◽  
Monique Floer ◽  
Erik Martinez-Hackert

ABSTRACTAdipose tissues (AT) expand in response to energy surplus through adipocyte hypertrophy and hyperplasia (i.e., adipogenesis). The latter is a process by which multipotent precursors differentiate into mature adipocytes. This process is directed by growth factors and cytokines, including members of the TGF-β family, which regulate intracellular signaling pathways that control adipogenic transcriptional programs. As ectopic adipogenesis has been linked with metabolic syndrome and other pathological conditions, we undertook to establish how TGF-β family growth factors and their inhibitors regulate this process in a 3T3-L1 adipogenesis model. We found that intracellular SMAD1/5/8 signaling pathways are activated while SMAD2/3 pathways are suppressed in differentiating cells. Addition of SMAD1/5/8 pathway activating ligands promoted cell proliferation, while SMAD2/3 pathway activating ligands suppressed adipocyte formation. We identified several ligand traps that blunted 3T3-L1 adipogenesis. Strikingly, anti-adipogenic traps and ligands exploited the same mechanism of regulation involving a negative feedback loop that links SMAD2/3 activation with SMAD1/5/8 hyper-phosphorylation, cytoplasmic retention, and reduced signaling. The identified anti-adipogenic traps could be used to control hyperplastic AT expansion and its associated pathological conditions.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Alan A. Aragon ◽  
Brad J. Schoenfeld

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 235 ◽  
Author(s):  
Bogdan-Constantin Neagu ◽  
Ovidiu Ivanov ◽  
Gheorghe Grigoras ◽  
Mihai Gavrilas

A growing number of households benefit from government subsidies to install renewable generation facilities such as PV panels, used to gain independence from the grid and provide cheap energy. In the Romanian electricity market, these prosumers can sell their generation surplus only at regulated prices, back to the grid. A way to increase the number of prosumers is to allow them to make higher profit by selling this surplus back into the local network. This would also be an advantage for the consumers, who could pay less for electricity exempt from network tariffs and benefit from lower prices resulting from the competition between prosumers. One way of enabling this type of trade is to use peer-to-peer contracts traded in local markets, run at microgrid (μG) level. This paper presents a new trading platform based on smart peer-to-peer (P2P) contracts for prosumers energy surplus trading in a real local microgrid. Several trading scenarios are proposed, which give the possibility to perform trading based on participants’ locations, instantaneous active power demand, maximum daily energy demand, and the principle of first come first served implemented in an anonymous blockchain trading ledger. The developed scheme is tested on a low-voltage (LV) microgrid model to check its feasibility of deployment in a real network. A comparative analysis between the proposed scenarios, regarding traded quatities and financial benefits is performed.


Sign in / Sign up

Export Citation Format

Share Document