stable control
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 56)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 146 ◽  
pp. 107528
Author(s):  
Guan Huang ◽  
Guoyun Lv ◽  
Yangyu Fan ◽  
Chao Geng ◽  
Xinyang Li

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 187
Author(s):  
Khalid A. Alattas ◽  
Ardashir Mohammadzadeh ◽  
Saleh Mobayen ◽  
Hala M. Abo-Dief ◽  
Abdullah K. Alanazi ◽  
...  

The Markov jump systems (MJSs) are a special case of parametric switching system. However, we know that time delay inevitably exists in many practical systems, and is known as the main source of efficiency reduction, and even instability. In this paper, the stochastic stable control design is discussed for time delay MJSs. In this regard, first, the problem of modeling of MJSs and their stability analysis using Lyapunov-Krasovsky functions is studied. Then, a state-feedback controller (SFC) is designed and its stability is proved on the basis of the Lyapunov theorem and linear matrix inequalities (LMIs), in the presence of polytopic uncertainties and time delays. Finally, by various simulations, the accuracy and efficiency of the proposed methods for robust stabilization of MJSs are demonstrated.


2021 ◽  
Author(s):  
Ulici Ioana-Anamaria ◽  
Codrean Alexandru ◽  
Tassos Natsakis

For many applications, a precise knowledge of the model of the robot is necessary for accurate and stable control. However, it is not always feasible or desirable to perform from scratch an in-depth study of the robot model, especially if it is not an element of concern for the respective application. In this article we present a methodology for identifying motor parameters of a robotic manipulator. We discuss the mathematical model and introduce an extensible toolbox with velocity-control based methodology for a fast identification of individual motor parameters. The results show that we can identify individual parameters even for joints that are commercialised as of the same type.


2021 ◽  
Vol 2082 (1) ◽  
pp. 012009
Author(s):  
Haowen Liu ◽  
Ripeng Li

Abstract In the field of industrial control, stepping has been widely used as an actuator. For this article, based on STM32F103 as the control core, the functions of start and stop, forward rotation, reverse rotation and speed regulation of the stepping motor are realized through four buttons. The system uses L293D to drive a stepper motor, LED0 and LED1 two status lights display the motor’s forward and reverse rotation status, and the digital tube displays the current stepper motor speed. The whole system includes L293D module, button module, status light module and speed display module. The whole system is modeled, theoretically analyzed and simulated based on the drive control principle of the stepper motor, and the precise and stable control performance of the system under different occasions is further verified through experiments.


2021 ◽  
Vol 11 (13) ◽  
pp. 5783
Author(s):  
Haiping Ai ◽  
An Zhu ◽  
Jiajia Wang ◽  
Xiaoyan Yu ◽  
Li Chen

Aiming at addressing the problem that the joints are easily destroyed by the impact torque during the process of space robot on-orbit capturing a non-cooperative spacecraft, a reinforcement learning control algorithm combined with a compliant mechanism is proposed to achieve buffer compliance control. The compliant mechanism can not only absorb the impact energy through the deformation of its internal spring, but also limit the impact torque to a safe range by combining with the compliance control strategy. First of all, the dynamic models of the space robot and the target spacecraft before capture are obtained by using the Lagrange approach and Newton-Euler method. After that, based on the law of conservation of momentum, the constraints of kinematics and velocity, the integrated dynamic model of the post-capture hybrid system is derived. Considering the unstable hybrid system, a buffer compliance control based on reinforcement learning is proposed for the stable control. The associative search network is employed to approximate unknown nonlinear functions, an adaptive critic network is utilized to construct reinforcement signal to tune the associative search network. The numerical simulation shows that the proposed control scheme can reduce the impact torque acting on joints by 76.6% at the maximum and 58.7% at the minimum in the capturing operation phase. And in the stable control phase, the impact torque acting on the joints were limited within the safety threshold, which can avoid overload and damage of the joint actuators.


Author(s):  
Jun Zhao ◽  
Hugang Han ◽  
◽  

Although the Takagi–Sugeno fuzzy model is effective for representing the dynamics of a plant to be controlled, two main questions arise when using it just as other models: 1) how to deal with the gap, which is referred to as uncertainty in this study, between the model and the concerned plant, and how to estimate the state information when it cannot be obtained directly, especially with the existence of uncertainty; 2) how to design a controller that guarantees a stable control system where only the estimated state is available and an uncertainty exists. While the existing studies cannot effectively observe the state and the resulting control systems can only be managed to be uniformly stable, this study first presents a state observer capable of precisely estimating the state regardless of the existence of uncertainty. Then, based on the state observer, an uncertainty observer is derived, which can track the trajectory of uncertainty whenever it occurs in a real system. Finally, a controller based on both observers is presented, which guarantees the asymptotic stability of the resulting control system.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ang Li ◽  
Chen Zhang ◽  
Baoyu Zheng ◽  
Lei Li

The system reachability set is calculated by covering all possible behaviours of the system through a finite number of simulation steps to ensure that the system trajectory stays within a set safety region. In this paper, the theory of the game method is applied to the design of the controller, a very small controller is designed, and good control results are obtained by simulation. The system gradually shows a divergent trend and cannot achieve stable control. A multihop channel reservation Medium Access Control (MAC) protocol based on a parallel mechanism is proposed. The multihop channel reservation mechanism is proposed based on periodic node sleep, and the node uses the reservation frame to make the reservation of the channel and transmits the data according to the reservation information; the parallel mechanism is used to make the reservation information and data transmission simultaneously.


Sign in / Sign up

Export Citation Format

Share Document