positive frequency
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Shota Ono ◽  
Daigo Kobayashi

Abstract Although many binary compounds have the B2 (CsCl-type) structure in the thermodynamic phase diagram, an origin of the structural stability is not understood well. Here, we focus on 416 compounds in the B2 structure extracted from the Materials Project, and study the dynamical stability of those compounds from first principles. We demonstrate that the B2 phase stability lies in whether the lowest frequency phonon at the M point in the Brillouin zone is endowed with a positive frequency. We show that the interatomic interactions up to the fourth nearest neighbor atoms are necessary for stabilizing such phonon modes, which should determine the minimum cutoff radius for constructing the interatomic potentials of binary compounds with guaranteed accuracy.


Author(s):  
Beatriz Elizaga Navascués ◽  
Guillermo A Mena Marugan

Abstract We study the imprint that certain quantization ambiguities may leave in effective regimes of the hybrid loop quantum description of cosmological perturbations. More specifically, in the case of scalar perturbations we investigate how to reconstruct the Mukhanov-Sasaki field in the effective regime of Loop Quantum Cosmology, taking as starting point for the quantization a canonical formulation in terms of other perturbative gauge invariants that possess different dynamics. This formulation of the quantum theory, in terms of variables other than the Mukhanov-Sasaki ones, is crucial to arrive at a quantum Hamiltonian with a good behavior, elluding the problems with ill defined Hamiltonian operators typical of quantum field theories. In the reconstruction of the Mukhanov-Sasaki field, we ask that the effective Mukhanov-Sasaki equations adopt a similar form and display the same Hamiltonian structure as the classical ones, a property that has been widely assumed in Loop Quantum Cosmology studies over the last decade. This condition actually restricts the freedom inherent to certain quantization ambiguities. Once these ambiguities are removed, the reconstruction of the Mukhanov-Sasaki field naturally identifies a set of positive-frequency solutions to the effective equations, and hence a choice of initial conditions for the perturbations. Our analysis constitutes an important and necessary test of the robustness of standard effective descriptions in Loop Quantum Cosmology, along with their observational predictions on the primordial power spectrum, taking into account that they should be the consequence of a more fundamental quantum theory with a well-defined Hamiltonian, in the spirit of Dirac’s long-standing ideas.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2120
Author(s):  
Takashi Kojima ◽  
Naoki Isogai ◽  
Tomoya Nishida ◽  
Tomoaki Nakamura ◽  
Kazuo Ichikawa

The keratometer keratoconus index (KKI) is a diagnostic index for the risk of keratoconus calculated from autokeratometer test values. We partially modified the KKI equation and assessed it without limiting the target age and severity of keratoconus. This retrospective study included 179 eyes of 99 patients with keratoconus and 468 eyes from 235 normal controls. In the modified KKI, oblique astigmatism or against-the-rule astigmatism was defined as ≥1D astigmatism. KKI diagnostic power was analyzed in subgroups of <50 and ≥50-year-old patients, and at different keratoconus stages. Although the sensitivity of modified KKI was comparable with that of original KKI (92.7% vs. 95.5%), modified KKI specificity was significantly higher (79.7% vs. 68.6%) (p = 0.0001). Using the modified KKI, sensitivity reached 100% (4/4) and specificity, 63.5% (33/52), in ≥50-year-old patients, while overall sensitivity in keratoconus ≥stage 2 was 100% (30/30). In conclusion, the modified KKI proved to be effective in keratoconus screening at all stages. However, it should be noted that false-positive frequency is higher in ≥50-year-old patients.


Author(s):  
James Ogilvie ◽  
Steven Van Belleghem ◽  
Mathieu Chouteau ◽  
Ryan Range ◽  
Riccardo Papa ◽  
...  

The evolution of mimicry in similarly defended prey is well described by Müllerian mimicry theory, which predicts the convergence of warning patterns in order to gain the most protection from predators. However, despite this prediction, we can find great diversity of color patterns amongst Müllerian mimics such as Heliconius butterflies in the neotropics. Furthermore, some species have evolved the ability to maintain multiple distinct warning patterns in single populations, a phenomenon known as polymorphic mimicry. The adaptive benefit of these polymorphisms is questionable since variation from the most common warning patterns is expected to be disadvantageous as novel signals are punished by predators naive to them. In this study, we use artificial butterfly models throughout Central and South America to characterize the selective pressures maintaining polymorphic mimicry in Heliconius doris. Our results highlight the complexity of positive frequency-dependent selection, the principal selective pressure driving convergence amongst Müllerian mimics, and its impacts on interspecific variation of mimetic warning colouration. We further show how this selection regime can both limit and facilitate the diversification of mimetic traits.


2021 ◽  
Author(s):  
Barbara Kraigher ◽  
Monika Butolen ◽  
Polonca Stefanic ◽  
Ines Mandic Mulec

AbstractSwarming is the collective movement of bacteria across a surface. It requires the production of surfactants (public goods) to overcome surface tension and provides an excellent model to investigate bacterial cooperation. Previously, we correlated swarm interaction phenotypes with kin discrimination between B. subtilis soil isolates, by showing that less related strains form boundaries between swarms and highly related strains merge. However, how kin discrimination affects cooperation and territoriality in swarming bacteria remains little explored. Here we show that the pattern of surface colonization by swarming mixtures is influenced by kin types. Closely related strain mixtures colonize the surface in a mixed swarm, while mixtures of less related strains show competitive exclusion as only one strain colonizes the surface. The outcome of nonkin swarm expansion depends on the initial ratio of the competing strains, indicating positive frequency-dependent competition. We find that addition of surfactin (a public good excreted from cells) can complement the swarming defect of nonkin mutants, whereas close encounters in nonkin mixtures lead to territorial exclusion, which limits the exploitation of surfactin by nonkin nonproducers. The work suggests that kin discrimination driven competitive territorial exclusion may be an important determinant for the success of cooperative surface colonization.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 436
Author(s):  
Yuhe Wang ◽  
Yudong Lian ◽  
Shiwei Han ◽  
Yang Yu ◽  
Xuan Qi ◽  
...  

A scheme for controlling the frequency difference of output pulse pair with double frequency shift loops is proposed. The frequency shift system includes two loop elements of 20 and 200 MHz. The first one carries out a single selective positive frequency shift of 1–20 MHz, and the second one can satisfy a single fixed positive frequency shift of 200 MHz. The reverse cascade technology of two acousto-optic crystals is introduced to solve the limitation of the small frequency shift of crystal size. A multichannel synchronization signal completes the time domain control of each acousto-optic modulator. Finally, the frequency shift difference of the output pulse pair ranges of 0–2 GHz, and the frequency shift accuracy is 5 MHz.


Author(s):  
James Ogilvie ◽  
Steven Van Belleghem ◽  
Mathieu Chouteau ◽  
Ryan Range ◽  
Riccardo Papa ◽  
...  

The evolution of mimicry in similarly defended prey is well described by Müllerian mimicry theory, which predicts the convergence of warning patterns in order to gain the most protection from predators. However, despite this prediction, we can find great diversity of color patterns amongst Müllerian mimics such as Heliconius butterflies in the neotropics. Furthermore, some species have evolved the ability to maintain multiple distinct warning patterns in single populations, a phenomenon known as polymorphic mimicry. The adaptive benefit of these polymorphisms is questionable since variation from the most common warning patterns is expected to be disadvantageous as novel signals are punished by predators naive to them. In this study, we use artificial butterfly models throughout Central and South America to characterize the selective pressures maintaining polymorphic mimicry in Heliconius doris. Our results highlight the complexity of positive frequency-dependent selection, the principal selective pressure driving convergence amongst Müllerian mimics, and its impacts on interspecific variation of mimetic warning colouration. We further show how this selection regime can both limit and facilitate the diversification of mimetic traits.


2021 ◽  
Vol 26 (03) ◽  
pp. 1-13
Author(s):  
Ênio Costa Resende ◽  
Henrique Tannús de Moura Carvalho ◽  
Ernane Antônio Alves Coelho ◽  
Luiz Carlos Gomes de Freitas
Keyword(s):  

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Bhramar Chatterjee ◽  
Narayan Banerjee

AbstractWe consider radiation from cosmological apparent horizon in Friedmann–Lemaitre–Robertson–Walker (FLRW) model in a double-null coordinate setting. As the spacetime is dynamic, there is no timelike Killing vector, instead we have Kodama vector which acts as dynamical time. We construct the positive frequency modes of the Kodama vector across the horizon. The conditional probability that a signal reaches the central observer when it is crossing from the outside gives the temperature associated with the horizon.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Viacheslav A. Emelyanov

AbstractWe find a coordinate-independent wave-packet solution of the massive Klein–Gordon equation with the conformal coupling to gravity in the de-Sitter universe. This solution can locally be represented through the superposition of positive-frequency plane waves at any space-time point, assuming that the scalar-field mass M is much bigger than the de-Sitter Hubble constant H. The solution is also shown to be related to the two-point function in the de-Sitter quantum vacuum. Moreover, we study the wave-packet propagation over cosmological times, depending on the ratio of M and H. In doing so, we find that this wave packet propagates like a point-like particle of the same mass if $$M \ggg H$$ M ⋙ H , but, if otherwise, the wave packet behaves highly non-classically.


Sign in / Sign up

Export Citation Format

Share Document