anion type
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 16)

H-INDEX

22
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Fan Yang ◽  
Meng Zhao ◽  
Darren Smith ◽  
Peggy Cebe ◽  
Sam Lucisano ◽  
...  

The synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate, its polymerization, and ion exchange to yield a trio of 1-butyl-2,3-dimethyl-4-vinylimidazolium polymers is described. Irrespective of the nature of the anion, substitution at the 2-position of the imidazolium moiety substantially increases the distance between the anion and cation. The methyl substituent at the 2-position also served to expose the importance of H-bonding for the attractive potential between imidazolium moiety and anions in polymers without a methyl group at the 2-position. The thermal characteristics of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts and corresponding poly(1-ethyl-3-methyl-4-vinylimidazolium) salts were evaluated. While the mid-point glass transition temperatures, Tg-mid, for 1-ethyl-3-methyl-4-vinylimidazolium polymers with CF3SO3−, (CF3SO2)2N− and PF6− counterions, were 153 °C, 88 °C and 200 °C, respectively, the Tg-mid values for 1-butyl-2,3-dimethyl-4vinylimidazolium polymers with corresponding counter-ions were tightly clustered at 98 °C, 99 °C and 84 °C, respectively. This dramatically reduced influence of the anion type on the glass transition temperature was attributed to the increased distance between the center of the anions and cations in the 1-butyl-2,3-dimethyl-4-vinylimidazolium polymer set, and minimal H-bonding interactions between the respective anions and the 1-butyl-2,3-dimethyl-4-vinylimidazolium moiety. It is believed that this is the first observation of substantial independence of the glass transition of an ionic polymer on the nature of its counterion.


2021 ◽  
Author(s):  
Reginaldo Gomes ◽  
Chris Birch ◽  
Morgan Cencer ◽  
Chenyang Li ◽  
Seoung-Bum Son ◽  
...  

Selective CO2 capture and electrochemical conversion is an important tool in the fight against climate change. Industrially, CO2 is captured using a variety of aprotic solvents due to their high CO2 solubility. However, most research efforts on electrochemical CO2 conversion use aqueous media and are plagued by competing hydrogen evolution reaction (HER) from water breakdown. Fortunately, aprotic solvents can circumvent HER; making it important to develop strategies that enable integrated CO2 capture and conversion in an aprotic solvent. However, the influence of ion solvation and solvent selection within nonaqueous electrolytes for efficient and selective CO2 reduction is unclear. In this work, we show that bulk solvation behavior within the nonaqueous electrolyte can control the CO2 reduction reaction and product distribution occurring at the catalyst-electrolyte interface. We study different TBA (tetrabutylammonium) salts in two electrolyte systems with glyme-ethers (e.g., 1,2 dimethoxyethane or DME) and dimethylsulfoxide (DMSO) as a low and high dielectric constant medium, respectively. Using spectroscopic tools, we quantify the fraction of ion pairs that form within the electrolyte and show how ion-pair formation is prevalent in DME electrolytes and is dependent on anion type. More importantly, we show as ion-pair formation decreases within the electrolyte, CO2 current densities increases, and a higher CO Faradaic efficiency is observed at low overpotentials. Meanwhile, in an electrolyte medium where ion-pair fraction does not change with anion type (such as in DMSO), a smaller influence of solvation was observed on CO2 current densities and product distribution. By directly coupling bulk solvation to interfacial reactions and product distribution, we showcase the importance and utility of controlling the reaction microenvironment in tuning electrocatalytic reaction pathways. Insights gained from this work will enable novel electrolyte design for efficient and selective CO2 conversion to desired fuels and chemicals


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2765
Author(s):  
Gabriele Calabrese ◽  
Candida Pipitone ◽  
Diego Marini ◽  
Francesco Giannici ◽  
Antonino Martorana ◽  
...  

In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX3 (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating. Comparison of specular X-ray diffraction and complementary grazing incidence X-ray diffraction analysis indicates that the use of DMF/DMSO mixed solvents promotes the strengthening of a dominant 100 or 210 texturing, as compared the case of pure DMF, and that the haloplumbate chains always lie in a plane parallel to the substrate. Under specific DMF/DMSO solvent volume ratios, the prepared films are found to be highly stable in time (up to seven months under fluxing N2 and in the dark) and to highly moist conditions (up to 25 days at 78% relative humidity). Furthermore, for representative (PRSH)PbX3 films, resistance against ultraviolet exposure (λ = 380 nm) is investigated, showing complete stability after irradiation for up to 15 h at a power density of 600 mW/cm2. These results make such thin films interesting for highly stable perovskite-based (opto)electronic devices.


Author(s):  
Qiu Zhang ◽  
Yilin Ma ◽  
Yong Lu ◽  
Xunzhu Zhou ◽  
Liu Lin ◽  
...  

2021 ◽  
Author(s):  
Qiu Zhang ◽  
Yilin Ma ◽  
Yong Lu ◽  
Xunzhu Zhou ◽  
Liu Lin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 594
Author(s):  
Iwona Cichowska-Kopczyńska ◽  
Dorota Warmińska ◽  
Bartosz Nowosielski

Deep eutectic solvents (DESs) became an object of a great interest as an alternative to ionic liquids (ILs) and commonly used in CO2 capture amine solutions. In the present study, five different DESs based on 3-amino-1-propanol as physical-chemical CO2 absorbents were used. The composition was chosen in order to estimate the effects of hydrogen bond acceptor:hydrogen bond donor (HBA:HBD) molar ratio, anion type and length of alkyl chain of composing salt. The Fourier Transform Infrared (FTIR) spectroscopy was used to confirm chemical reaction. The solubility of CO2 was measured at low pressures up to 170 kPa at the temperature range of 293–318 K. Viscosity, polarity and Kamlet–Taft parameters were determined in order to estimate the dependences of the parameters and the CO2 capacity. CO2 uptake was observed to improve with decreasing molar ratio of hydrogen bond donor. Comparing the CO2 capacity of [TBAC]-based DESs, at the approximate pressure of 50 kPa, it was observed that the capacity increased in the following order of molar ratios—1:8 < 1:6 < 1:4 and a decrease in molar ratio from 1:8 to 1:4 resulted in about a 100% increase of capacity. Compared to [TBAC][AP] DESs, the [TEAC][AP] 1:4 and [TBAB][AP] 1:4 exhibited higher CO2 uptake, though the best results were obtained for [TBAB][AP].


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 346 ◽  
Author(s):  
Jayakumar Karthikeyan ◽  
Helmer Fjellvåg ◽  
Silje Bundli ◽  
Anja Olafsen Sjåstad

The exfoliation ability of nitrate based Mg1−xAlx(OH)2(NO3)x·mH2O layered double hydroxides (Mg-Al LDH) in formamide into single or multilayer nanosheets depends strongly on nitrate anion orientation and layer charge. Our systematic studies used materials that were likely to disclose differences with respect to anion type and their concentrations in the interlayer gallery. We assured to avoid any carbonate incorporation into the galleries for nitrate, chloride, iodide, and sulfate based Mg-Al LDHs. Furthermore, the comparative exfoliation experiments were conducted for fully hydrated samples with as similar particle morphology as possible. The exfoliation of nitrate Mg-Al LDH is far superior to similar clays with carbonate, sulfate, chloride, or iodide as charge balancing anions. Quantitative analysis of exfoliation yield for pre-treated, fully hydrated samples, shows an optimum composition for exfoliation into single nanosheets of around x ≈ 0.25, while double or triple layered sheets are encountered for other x-values. We observe a clear correlation between the expansion of the interlayer gallery due to progressing tilts of nitrate anions and water molecules out of the horizontal interlayer plane, suspension turbidity, and degree of exfoliation. The established correlations extends to nitrate Ni-Al LDH materials. We finally claim that morphology is a dominating parameter, with house-of-card morphology particles exfoliation far less than platelet-like particles. Hence, hydrothermal treatment may be favorable to enhance exfoliation yields.


2020 ◽  
Vol 13 (12) ◽  
pp. 9090-9104
Author(s):  
A.V. Agafonov ◽  
N.O. Kudryakova ◽  
L.M. Ramenskaya ◽  
E.P. Grishina

2020 ◽  
Vol 53 (5) ◽  
pp. 1243-1251
Author(s):  
D. Hamani ◽  
O. Masson ◽  
P. Thomas

A simple method has been developed based on pure geometrical concepts to localize lone pairs (LPs) of cations of the p-block elements and model their steric effect. The method was applied to 1185 structures containing LP cations in 2439 non-equivalent positions. For oxide crystal structures, it is observed that, going from bottom left to top right in the periodic table, LPs move away from the cation core and decrease in size. For a given kind of cation M*, the LP radius increases linearly with the M*–LP distance, the smallest rate being observed for Tl+ and the largest for Cl5+. The influence of the anion type was also studied in the case of the Te4+ cation. Overall, the same trends were observed. The smallest Te–LP distances and LP radii are found for anions of large size and small charge.


2020 ◽  
Vol 103 (10) ◽  
pp. 6025-6039
Author(s):  
Dale P. Prentice ◽  
Lauren Gomez‐Zamorano ◽  
Magdalena Balonis ◽  
Bartu Erdemli ◽  
Kirk Ellison ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document