postmortem brain
Recently Published Documents


TOTAL DOCUMENTS

661
(FIVE YEARS 217)

H-INDEX

59
(FIVE YEARS 11)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria da Graça Morais Martin ◽  
Vitor Ribeiro Paes ◽  
Ellison Fernando Cardoso ◽  
Carlos Eduardo Borges Passos Neto ◽  
Cristina Takami Kanamura ◽  
...  

Abstract Background Brain abnormalities are a concern in COVID-19, so we used minimally invasive autopsy (MIA) to investigate it, consisting of brain 7T MR and CT images and tissue sampling via transethmoidal route with at least three fragments: the first one for reverse transcription polymerase chain reaction (RT-PCR) analysis and the remaining fixed and stained with hematoxylin and eosin. Two mouse monoclonal anti-coronavirus (SARS-CoV-2) antibodies were employed in immunohistochemical (IHC) reactions. Results Seven deceased COVID-19 patients underwent MIA with brain MR and CT images, six of them with tissue sampling. Imaging findings included infarcts, punctate brain hemorrhagic foci, subarachnoid hemorrhage and signal abnormalities in the splenium, basal ganglia, white matter, hippocampi and posterior cortico-subcortical. Punctate brain hemorrhage was the most common finding (three out of seven cases). Brain histological analysis revealed reactive gliosis, congestion, cortical neuron eosinophilic degeneration and axonal disruption in all six cases. Other findings included edema (5 cases), discrete perivascular hemorrhages (5), cerebral small vessel disease (3), perivascular hemosiderin deposits (3), Alzheimer type II glia (3), abundant corpora amylacea (3), ischemic foci (1), periventricular encephalitis foci (1), periventricular vascular ectasia (1) and fibrin thrombi (1). SARS-CoV-2 RNA was detected with RT-PCR in 5 out of 5 and IHC in 6 out 6 patients (100%). Conclusions Despite limited sampling, MIA was an effective tool to evaluate underlying pathological brain changes in deceased COVID-19 patients. Imaging findings were varied, and pathological features corroborated signs of hypoxia, alterations related to systemic critically ill and SARS-CoV-2 brain invasion.


Author(s):  
Edison Leung ◽  
Ethan W. Lau ◽  
Andi Liang ◽  
Constanza de Dios ◽  
Robert Suchting ◽  
...  

Author(s):  
Rehab F. Abdelhamid ◽  
Kotaro Ogawa ◽  
Goichi Beck ◽  
Kensuke Ikenaka ◽  
Eriko Takeuchi ◽  
...  

Abstract The pathological hallmark of the majority of amyotrophic lateral sclerosis (ALS) cases is the mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43), an RNA-binding protein. Several studies have attributed disease processes of ALS to abnormal RNA metabolism. However, dysregulated biogenesis of RNA, especially non-coding RNA (ncRNA), is poorly understood. To resolve it, RNA-Seq, biochemical, and immunohistochemical analyses were performed on the pyramidal tract of the medulla oblongata of sporadic ALS (sALS) and control postmortem brain samples. Here, we report perturbation of ncRNA biogenesis in PIWI-interacting RNA (piRNA) in several sALS brain samples associated with TDP-43 pathology. In addition, we confirmed the dysregulation of two PIWI homologs, PIWI-like-mediated gene silencing 1 (PIWIL1) and PIWIL4, which bind to piRNAs to regulate their expression. PIWIL1 was mislocalized and co-localized with TDP-43 in motor neurons of sporadic ALS lumbar cords. Our results imply that dysregulation of piRNA, PIWIL1, and PIWIL4 is linked to pathogenesis of ALS. Based on these results, piRNAs and PIWI proteins are potential diagnostic biomarkers and therapeutic targets of ALS.


BMC Neurology ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Mamiko Yamada ◽  
Hisato Suzuki ◽  
Hiroyuki Adachi ◽  
Atsuko Noguchi ◽  
Fuyuki Miya ◽  
...  

Abstract Background Pontocerebellar hypoplasia (PCH) is increasingly known as a degenerative disease rather than simple “hypoplasia”. At least 21 disease-causing genes have been identified for PCH so far. Because PCH is very heterogenous, prognostic prediction based solely on clinical or radiologic findings is not feasible. Case presentation Here, we report two siblings who had a fulminant neonatal course. The documentation of pontocerebellar hypoplasia by postmortem brain CT imaging in one of the siblings and a subsequent complex and comprehensive whole genome analysis established that both siblings had bi-allelic compound heterozygous variants (a splicing variant and a deletion) in the SLC25A46 gene which encodes a solute carrier protein essential for mitochondrial function. Long-read whole genome sequencing was required to confirm the presence of the deletion. The fulminant courses suggest that SLC25A46-related PCH is an acutely progressive degenerative condition starting in utero, rather than a simple static hypoplasia. Conclusion The genomic analysis was instrumental and essential to solving the enigma of the unexplained neonatal deaths of these two siblings and to provide accurate genetic counseling.


2021 ◽  
Author(s):  
Yann Le Guen ◽  
Guo Luo ◽  
Aditya Ambati ◽  
Vincent Damotte ◽  
Iris Jansen ◽  
...  

Using genome-wide association data, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's (PD) or Alzheimer's (AD) disease versus controls across ancestry groups. A shared genetic association was observed across diseases at rs601945 (PD: odds ratio (OR)=0.84; 95% confidence interval, [0.80; 0.88]; p=2.2x10-13; AD: OR=0.91[0.89; 0.93]; p=1.8x10-22), and with a protective HLA association recently reported in amyotrophic lateral sclerosis (ALS). Hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03, and absent for HLA-DRB1*04:05. The same signal was associated with decreased neurofibrillary tangles (but not neuritic plaque density) in postmortem brain and was more strongly associated with Tau levels than Aβ42 levels in the cerebrospinal fluid. Finally, protective HLA-DRB1*04 subtypes strongly bound aggregation-prone Tau PHF6 sequence, but only when acetylated at K311, a modification central to aggregation. A HLA-DRB1*04-mediated adaptive immune response, potentially against Tau, decreases PD, AD and ALS risk, offering the possibility of new therapeutic avenues.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2000
Author(s):  
Alejandra Rodríguez-Ortiz ◽  
Julio César Montoya-Villegas ◽  
Felipe García-Vallejo ◽  
Yecid Mina-Paz

DNA methylation and histone posttranslational modifications are epigenetics processes that contribute to neurophenotype of Down Syndrome (DS). Previous reports present strong evidence that nonhistone high-mobility-group N proteins (HMGN) are epigenetic regulators. They play important functions in various process to maintain homeostasis in the brain. We aimed to analyze the differential expression of five human HMGN genes in some brain structures and age ranks from DS postmortem brain samples. Methodology: We performed a computational analysis of the expression of human HMGN from the data of a DNA microarray experiment (GEO database ID GSE59630). Using the transformed log2 data, we analyzed the differential expression of five HMGN genes in several brain areas associated with cognition in patients with DS. Moreover, using information from different genome databases, we explored the co-expression and protein interactions of HMNGs with the histones of nucleosome core particle and linker H1 histone. Results: We registered that HMGN1 and HMGN5 were significantly overexpressed in the hippocampus and areas of prefrontal cortex including DFC, OFC, and VFC of DS patients. Age-rank comparisons between euploid control and DS individuals showed that HMGN2 and HMGN4 were overexpressed in the DS brain at 16 to 22 gestation weeks. From the BioGRID database, we registered high interaction scores of HMGN2 and HMGN4 with Hist1H1A and Hist1H3A. Conclusions: Overall, our results give strong evidence to propose that DS would be an epigenetics-based aneuploidy. Remodeling brain chromatin by HMGN1 and HMGN5 would be an essential pathway in the modification of brain homeostasis in DS.


2021 ◽  
Vol 33 (4) ◽  
pp. 491-498
Author(s):  
Lale Gonenir Erbay ◽  
◽  
Rifat Karlidag ◽  
Mucahit Oruc ◽  
Yilmaz Cigremis ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13201
Author(s):  
Songphon Kanlayaprasit ◽  
Surangrat Thongkorn ◽  
Pawinee Panjabud ◽  
Depicha Jindatip ◽  
Valerie W. Hu ◽  
...  

Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome–interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring’s prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring’s prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.


2021 ◽  
Vol 9 (1) ◽  
pp. e1119
Author(s):  
Ana Carmena Moratalla ◽  
Yves Carpentier Solorio ◽  
Florent Lemaitre ◽  
Negar Farzam-kia ◽  
Annie Levert ◽  
...  

Background and ObjectivesWe posit the involvement of the natural killer group 2D (NKG2D) pathway in multiple sclerosis (MS) pathology via the presence of specific NKG2D ligands (NKG2DLs). We aim to evaluate the expression of NKG2DLs in the CNS and CSF of patients with MS and to identify cellular stressors inducing the expression of UL16-binding protein 4 (ULBP4), the only detectable NKG2DL. Finally, we evaluate the impact of ULBP4 on functions such as cytokine production and motility by CD8+ T lymphocytes, a subset largely expressing NKG2D, the cognate receptor.MethodsHuman postmortem brain samples and CSF from patients with MS and controls were used to evaluate NKG2DL expression. In vitro assays using primary cultures of human astrocytes and neurons were performed to identify stressors inducing ULBP4 expression. Human CD8+ T lymphocytes from MS donors and age/sex-matched healthy controls were isolated to evaluate the functional impact of soluble ULBP4.ResultsWe detected mRNA coding for the 8 identified human NKG2DLs in brain samples from patients with MS and controls, but only ULBP4 protein expression was detectable by Western blot. ULBP4 levels were greater in patients with MS, particularly in active and chronic active lesions and normal-appearing white matter, compared with normal-appearing gray matter from MS donors and white and gray matter from controls. Soluble ULBP4 was also detected in CSF of patients with MS and controls, but a smaller shed/soluble form of 25 kDa was significantly elevated in CSF from female patients with MS compared with controls and male patients with MS. Our data indicate that soluble ULBP4 affects various functions of CD8+ T lymphocytes. First, it enhanced the production of the proinflammatory cytokines GM-CSF and interferon-γ (IFNγ). Second, it increased CD8+ T lymphocyte motility and favored a kinapse-like behavior when cultured in the presence of human astrocytes. CD8+ T lymphocytes from patients with MS were especially altered by the presence of soluble ULBP4 compared with healthy controls.DiscussionOur study provides new evidence for the involvement of NKG2D and its ligand ULBP4 in MS pathology. Our results point to ULBP4 as a viable target to specifically block 1 component of the NKG2D pathway without altering immune surveillance involving other NKG2DL.


Sign in / Sign up

Export Citation Format

Share Document