chinese isolate
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 22)

H-INDEX

14
(FIVE YEARS 3)

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12607
Author(s):  
Sergei N. Chirkov ◽  
Anna Sheveleva ◽  
Anastasiya Snezhkina ◽  
Anna Kudryavtseva ◽  
George Krasnov ◽  
...  

Background Chrysanthemum is a popular ornamental and medicinal plant that suffers from many viruses and viroids. Among them, chrysanthemum virus B (CVB, genus Carlavirus, family Betaflexiviridae) is widespread in all chrysanthemum-growing regions. Another carlavirus, chrysanthemum virus R (CVR), has been recently discovered in China. Information about chrysanthemum viruses in Russia is very scarce. The objective of this work was to study the prevalence and genetic diversity of CVB and CVR in Russia. Methods We surveyed the chrysanthemum (Chrysanthemum morifolium Ramat.) germplasm collection in the Nikita Botanical Gardens, Yalta, Russia. To detect CVB and CVR, we used RT-PCR with virus-specific primers. To reveal the complete genome sequences of CVB and CVR isolates, metatransciptomic analysis of the cultivars Ribonette, Fiji Yellow, and Golden Standard plants, naturally co-infected with CVB and CVR, was performed using Illumina high-throughput sequencing. The recombination detection tool (RDP4) was employed to search for recombination in assembled genomes. Results A total of 90 plants of 23 local and introduced chrysanthemum cultivars were surveyed. From these, 58 and 43% plants tested positive for CVB and CVR, respectively. RNA-Seq analysis confirmed the presence of CVB and CVR, and revealed tomato aspermy virus in each of the three transcriptomes. Six near complete genomes of CVB and CVR were assembled from the RNA-Seq reads. The CVR isolate X21 from the cultivar Golden Standard was 92% identical to the Chinese isolate BJ. In contrast, genomes of the CVR isolates X6 and X13 (from the cultivars Ribonette and Fiji Yellow, respectively), were only 76% to 77% identical to the X21 and BJ, and shared 95% identity to one another and appear to represent a divergent group of the CVR. Two distantly related CVB isolates, GS1 and GS2, were found in a plant of the cultivar Golden Standard. Their genomes shared from 82% to 87% identity to each other and the CVB genome from the cultivar Fiji Yellow (isolate FY), as well as to CVB isolates from Japan and China. A recombination event of 3,720 nucleotides long was predicted in the replicase gene of the FY genome. It was supported by seven algorithms implemented in RDP4 with statistically significant P-values. The inferred major parent was the Indian isolate Uttar Pradesh (AM765837), and minor parent was unknown. Conclusion We found a wide distribution of CVB and CVR in the chrysanthemum germplasm collection of the Nikita Botanical Gardens, which is the largest in Russia. Six near complete genomes of CVR and CVB isolates from Russia were assembled and characterized for the first time. This is the first report of CVR in Russia and outside of China thus expanding the information on the geographical distribution of the virus. Highly divergent CVB and CVR isolates have been identified that contributes the better understanding the genetic diversity of these viruses.


2021 ◽  
Vol 37 (6) ◽  
pp. 619-631
Author(s):  
Zohreh Moradi ◽  
Mohsen Mehrvar

Alfalfa mosaic virus (AMV), an economically important pathogen, is present worldwide with a very wide host range. This work reports for the first time the infection of Vinca minor and Wisteria sinensis with AMV using RNA sequencing and reverse transcription polymerase chain reaction confirmation. De novo assembly and annotating of contigs revealed that RNA1, RNA2, and RNA3 genomic fragments consist of 3,690, 2,636, and 2,057 nucleotides (nt) for IR-VM and 3,690, 2,594, and 2,057 nt for IR-WS. RNA1 and RNA3 segments of IR-VM and IR-WS closely resembled those of the Chinese isolate HZ, with 99.23-99.26% and 98.04-98.09% nt identity, respectively. Their RNA2 resembled that of Canadian isolate CaM and American isolate OH-2-2017, with 97.96-98.07% nt identity. The P2 gene revealed more nucleotide diversity compared with other genes. Genes in the AMV genome were under dominant negative selection during evolution, and the P1 and coat protein (CP) proteins were subject to the strongest and weakest purifying selection, respectively. In the population genetic analysis based on the CP gene sequences, all 107 AMV isolates fell into two main clades (A, B) and isolates of clade A were further divided into three groups with significant subpopulation differentiation. The results indicated moderate genetic variation within and no clear geographic or genetic structure between the studied populations, implying moderate gene flow can play an important role in differentiation and distribution of genetic diversity among populations. Several factors have shaped the genetic structure and diversity of AMV: selection, recombination/reassortment, gene flow, and random processes such as founder effects.


2021 ◽  
Author(s):  
Lei Jiang ◽  
Jing Chen ◽  
You-zhi Yang ◽  
Rui Li ◽  
Shuang Li ◽  
...  

Abstract BackgroundPromoter is an important factor during gene expression in cells. In this study, we cloned a full-length promoter from the strawberry vein banding virus (SVBV) Chinese isolate and produced several its deletion mutants.MethodsThe full-length promoter of SVBV (SP1) and its three deletion mutants (SP2, SP3, and SP4) were amplified using polymerase chain reaction (PCR). The expression activities controlled by the SVBV SP1, SP2, SP3, and SP4 were evaluated using β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes.ResultsOur transient expression assays showed that the SVBV SP1 promoter as well as its three deletion mutants all expressed the reporter genes, but to very different levels. Interestingly, the expression activity driven by the SP1 promoter was much higher than that shown by the CaMV 35S promoter. After stable transformation of a GUS gene into Nicotiana tabacum plants, the transgene expression level driven by the SVBV SP1 promoter was about 2.6-fold greater than that driven by the CaMV 35S promoter. In addition, the GUS gene expression levels could be enhanced by co-infiltrating the plants with the SP1 promoter-driven vector carrying the GUS gene and the vector expressing the SVBV ORF V or ORF VI.ConclusionsThe SVBV Chinese isolate promoter SP1 is a stronger promoter than the CaMV 35S and FLt-US promoter, may be more useful for production of stable transgenic plants.


2021 ◽  
Vol 188 ◽  
pp. 112792
Author(s):  
Min Lin ◽  
Donovon A. Adpressa ◽  
Meiyu Feng ◽  
Ya Lu ◽  
Benjamin R. Clark

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emma P. Njau ◽  
Jean-Baka Domelevo Entfellner ◽  
Eunice M. Machuka ◽  
Edwina N. Bochere ◽  
Sarah Cleaveland ◽  
...  

AbstractAfrican swine fever (ASF) caused by the African swine fever virus (ASFV) is ranked by OIE as the most important source of mortality in domestic pigs globally and is indigenous to African wild suids and soft ticks. Despite two ASFV genotypes causing economically devastating epidemics outside the continent since 1961, there have been no genome-level analyses of virus evolution in Africa. The virus was recently transported from south-eastern Africa to Georgia in 2007 and has subsequently spread to Russia, eastern Europe, China, and south-east Asia with devastating socioeconomic consequences. To date, two of the 24 currently described ASFV genotypes defined by sequencing of the p72 gene, namely genotype I and II, have been reported outside Africa, with genotype II being responsible for the ongoing pig pandemic. Multiple complete genotype II genome sequences have been reported from European, Russian and Chinese virus isolates but no complete genome sequences have yet been reported from Africa. We report herein the complete genome of a Tanzanian genotype II isolate, Tanzania/Rukwa/2017/1, collected in 2017 and determined using an Illumina short read strategy. The Tanzania/Rukwa/2017/1 sequence is 183,186 bp in length (in a single contig) and contains 188 open reading frames. Considering only un-gapped sites in the pairwise alignments, the new sequence has 99.961% identity with the updated Georgia 2007/1 reference isolate (FR682468.2), 99.960% identity with Polish isolate Pol16_29413_o23 (MG939586) and 99.957% identity with Chinese isolate ASFV-wbBS01 (MK645909.1). This represents 73 single nucleotide polymorphisms (SNPs) relative to the Polish isolate and 78 SNPs with the Chinese genome. Phylogenetic analysis indicated that Tanzania/Rukwa/2017/1 clusters most closely with Georgia 2007/1. The majority of the differences between Tanzania/Rukwa/2017/1 and Georgia 2007/1 genotype II genomes are insertions/deletions (indels) as is typical for ASFV. The indels included differences in the length and copy number of the terminal multicopy gene families, MGF 360 and 110. The Rukwa2017/1 sequence is the first complete genotype II genome from a precisely mapped locality in Africa, since the exact origin of Georgia2007/1 is unknown. It therefore provides baseline information for future analyses of the diversity and phylogeography of this globally important genetic sub-group of ASF viruses.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1050
Author(s):  
Liqin Tu ◽  
Shuhua Wu ◽  
Danna Gao ◽  
Yong Liu ◽  
Yuelin Zhu ◽  
...  

Tomato mottle mosaic virus (ToMMV) is a noteworthy virus which belongs to the Virgaviridae family and causes serious economic losses in tomato. Here, we isolated and cloned the full-length genome of a ToMMV Chinese isolate (ToMMV-LN) from a naturally infected tomato (Solanum lycopersicum L.). Sequence analysis showed that ToMMV-LN contains 6399 nucleotides (nts) and is most closely related to a ToMMV Mexican isolate with a sequence identity of 99.48%. Next, an infectious cDNA clone of ToMMV was constructed by a homologous recombination approach. Both the model host N. benthamiana and the natural hosts tomato and pepper developed severe symptoms upon agroinfiltration with pToMMV, which had a strong infectivity. Electron micrographs indicated that a large number of rigid rod-shaped ToMMV virions were observed from the agroinfiltrated N. benthamiana leaves. Finally, our results also confirmed that tomato plants inoculated with pToMMV led to a high infection rate of 100% in 4–5 weeks post-infiltration (wpi), while pepper plants inoculated with pToMMV led to an infection rate of 40–47% in 4–5 wpi. This is the first report of the development of a full-length infectious cDNA clone of ToMMV. We believe that this infectious clone will enable further studies of ToMMV genes function, pathogenicity and virus–host interaction.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yuchao Lai ◽  
Xinyang Wu ◽  
Lanqing Lv ◽  
Jiajia Weng ◽  
Kelei Han ◽  
...  

Gynura japonica (Thunb.) Juel [Asteraceae; syn: G. segetum (Lour.) Merr] is an important perennial medicinal herb used in China for topical treatment of trauma injuries (Lin et al. 2003). It grows naturally in the southern provinces of China and is also sometimes cultivated. During 2018-2020, wild G. japonica plants exhibiting chlorotic spots and mosaic symptoms were observed in Zhejiang province, China. To identify the possible causal agents of the disease, a single symptomatic leaf sample was collected in August 2019 and sent to Zhejiang Academy of Agricultural Sciences (Hangzhou, China) for next generation sequencing (NGS). Total RNAs extracted with TRIzol (Invitrogen, Carlsbad, USA) were subjected to high throughput sequencing on the Illumina NovaSeq 6000 platform with PE150bp and data analysis was performed by CLC Genomic Workbench 11 with default parameters (QIAGEN, Hilden, Germany). A total of 37,314,080 paired-end reads were obtained, and 11,785 contigs (961 to 10,964 bp) were generated and compared with sequences in GenBank using BLASTn or BLASTx. Of the total of 12 viral-related contigs obtained, one with a length of 6,442 nt mapped to the genomic RNA of ASGV (MN495979), seven contigs with lengths ranging from 1,034 to 2,901 nt mapped to Chrysanthemum virus B (CVB), and four mapped to broad bean wilt virus 2 (BBWV2), a virus which is known to infect G. procumbens (Kwak et al. 2017). To further confirm the presence of ASGV and CVB, primers were designed and the complete nucleotide sequences of both viruses were amplified from the original NGS sample using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) according to the manufacturer’s instructions (Tiosbio, Beijing, China). BLASTn analysis revealed that the complete 6,451 nt sequence of ASGV (GenBank accession No. MW259059) shared the highest identity (81.2%) with a Chinese isolate of ASGV from citrus (MN495979). The two isolates grouped with another Chinese isolate (from pear) in phylogenetic analysis. The predicted coat protein of the virus had the highest nt identity of 93.7% (96.2% amino acid sequence identity) with that of the Chinese ASGV isolate XY from apple (KX686100). The complete genomes of two distinct molecular variants of CVB (both 8,987 nt in length) were also obtained from this sample (GenBank accession Nos. MW269552, MW269553). They shared 86.8% nt identity with each other and had 81.1% and 82.1% identity to the only known complete sequence of CVB from chrysanthemum (AB245142). Ten additional wild G. japonica plants with mosaic symptoms were collected randomly during 2019-2020 from Hangzhou (n=6) and Ningbo (n=4) in Zhejiang province and tested by RT-PCR with specific primer pairs to detect BBWV2, ASGV and CVB. RT-PCR and subsequent sequencing revealed that these three viruses were present in all the samples tested, indicating that co-infection of G. japonica by ASGV, CVB and BBWV2 is common. CVB mainly infects chrysanthemum (Singh et al. 2012), while ASGV is known as a pathogen of various fruit trees especially in the family Rosaceae, although there are recent reports that it can also infect some plants in Gramineae, Asparagaceae and Nelumbonaceae (Bhardwaj et al. 2017; Chen et al. 2019; He et al. 2019). Our results provide the first report that Gynura is a natural host of CVB and ASGV. Further surveys and biological studies are underway to evaluate the importance of Gynura as a virus reservoir for epidemics among the various hosts.


Virology ◽  
2021 ◽  
Vol 556 ◽  
pp. 101-109
Author(s):  
Fan Zhang ◽  
Shuang Liu ◽  
Tianye Zhang ◽  
Zhuangxin Ye ◽  
Xiaolei Han ◽  
...  

Nematology ◽  
2021 ◽  
pp. 1-20
Author(s):  
Yasuharu Mamiya ◽  
Mitsuteru Akiba ◽  
Taisuke Ekino ◽  
Natsumi Kanzaki

Summary Steinernema tielingense was found to be widely distributed in Japan. The molecular characteristics of the nematodes isolated from Japan are basically in accordance with those mentioned in the original description of S. tielingense. However, the Japanese isolates are morphologically distinct from the type population by the following characters: length of the infective juvenile, 711 (671-769) μm, excretory pore of adult males and infective juveniles located posterior mid-pharynx, D% < 50%, smaller H value of 35% and shorter spicules in adult males of both generations. Although discrepancies in morphology and morphometric data between the Chinese isolate and Japanese isolate were observed, the molecular data matched and on this basis the Japanese isolate was identified as being conspecific with S. tielingense. The symbiotic bacterium isolated from the Japanese population of S. tielingense was identified as Xenorhabdus bovienii.


Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3115-3117
Author(s):  
Lev G. Nemchinov ◽  
Samuel Grinstead

Recently, alfalfa virus S (AVS), a new species in the family Alphaflexiviridae, was identified in alfalfa samples originating from Sudan, northern Africa. Here, we report on the identification and complete genomic sequence of an AVS isolate found in 7-day-old seedlings grown from alfalfa seeds acquired from China. The Chinese isolate of AVS differed in its nucleotide sequence from the Sudanese isolate by 8.6%. The detection of AVS in alfalfa seedlings developed from the germinated seeds may indicate a potential role of seed transmission in the distribution of this virus. The results obtained suggest that AVS may be far more widespread than previously thought.


Sign in / Sign up

Export Citation Format

Share Document