dimensional simplicial complex
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
Alexey Balitskiy ◽  
Aleksandr Berdnikov

Abstract The notion of the Urysohn d-width measures to what extent a metric space can be approximated by a d-dimensional simplicial complex. We investigate how local Urysohn width bounds on a Riemannian manifold affect its global width. We bound the 1-width of a Riemannian manifold in terms of its first homology and the supremal width of its unit balls. Answering a question of Larry Guth, we give examples of n-manifolds of considerable ( n - 1 ) {(n-1)} -width in which all unit balls have arbitrarily small 1-width. We also give examples of topologically simple manifolds that are locally nearly low-dimensional.


2020 ◽  
Vol 11 (1) ◽  
pp. 72-87
Author(s):  
Mattia G. Bergomi ◽  
Massimo Ferri ◽  
Lorenzo Zuffi

Abstract Graphs are a basic tool in modern data representation. The richness of the topological information contained in a graph goes far beyond its mere interpretation as a one-dimensional simplicial complex. We show how topological constructions can be used to gain information otherwise concealed by the low-dimensional nature of graphs. We do this by extending previous work in homological persistence, and proposing novel graph-theoretical constructions. Beyond cliques, we use independent sets, neighborhoods, enclaveless sets and a Ramsey-inspired extended persistence.


10.37236/8394 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Lorenzo Venturello

A $d$-dimensional simplicial complex is balanced if the underlying graph is $(d+1)$-colorable. We present an implementation of cross-flips, a set of local moves introduced by Izmestiev, Klee and Novik which connect any two PL-homeomorphic balanced combinatorial manifolds. As a result we exhibit a vertex minimal balanced triangulation of the real projective plane, of the dunce hat and of the real projective space, as well as several balanced triangulations of surfaces and 3-manifolds on few vertices. In particular we construct small balanced triangulations of the 3-sphere that are non-shellable and shellable but not vertex decomposable.


2018 ◽  
Vol 12 (04) ◽  
pp. 989-1002
Author(s):  
Orr Beit-Aharon ◽  
Roy Meshulam

Let [Formula: see text] be a finite abelian group of order [Formula: see text] and let [Formula: see text] denote the [Formula: see text]-simplex on the vertex set [Formula: see text]. The sum complex [Formula: see text] associated to a subset [Formula: see text] and [Formula: see text], is the [Formula: see text]-dimensional simplicial complex obtained by taking the full [Formula: see text]-skeleton of [Formula: see text] together with all [Formula: see text]-subsets [Formula: see text] that satisfy [Formula: see text]. Let [Formula: see text] denote the space of complex-valued [Formula: see text]-cochains of [Formula: see text]. Let [Formula: see text] denote the reduced [Formula: see text]th Laplacian of [Formula: see text], and let [Formula: see text] be the minimal eigenvalue of [Formula: see text]. It is shown that if [Formula: see text] and [Formula: see text] are fixed, and [Formula: see text] is a random subset of [Formula: see text] of size [Formula: see text], then [Formula: see text]


2018 ◽  
Vol 30 (2) ◽  
pp. 527-532
Author(s):  
Kouyemon Iriye ◽  
Daisuke Kishimoto

AbstractGolodness of two-dimensional simplicial complexes is studied through polyhedral products, and combinatorial and topological characterizations of Golodness of surface triangulations are given. An answer to the question of Berglund is also given so that there is a two-dimensional simplicial complex which is rationally Golod but not Golod over{\mathbb{Z}/p}.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 745-756 ◽  
Author(s):  
Rahim Rahmati-Asghar ◽  
Siamak Yassemi

In this paper we introduce a class of monomial ideals, called k-decomposable ideals. It is shown that the class of k-decomposable ideals is contained in the class of monomial ideals with linear quotients, and when k is large enough, the class of k-decomposable ideals is equal to the class of ideals with linear quotients. In addition, it is shown that a d-dimensional simplicial complex is k-decomposable if and only if the Stanley-Reisner ideal of its Alexander dual is a k-decomposable ideal, where k ≤ d. Moreover, it is shown that every k-decomposable ideal is componentwise k-decomposable.


2013 ◽  
Vol 56 (2) ◽  
pp. 381-386 ◽  
Author(s):  
M. R. POURNAKI ◽  
S. A. SEYED FAKHARI ◽  
S. YASSEMI

AbstractFor a given (d−1)-dimensional simplicial complex Γ, we denote its h-vector by h(Γ)=(h0(Γ),h1(Γ),. . .,hd(Γ)) and set h−1(Γ)=0. The known Swartz equality implies that if Δ is a (d−1)-dimensional Buchsbaum simplicial complex over a field, then for every 0 ≤ i ≤ d, the inequality ihi(Δ)+(d−i+1)hi−1(Δ) ≥ 0 holds true. In this paper, by using these inequalities, we give a simple proof for a result of Terai (N. Terai, On h-vectors of Buchsbaum Stanley–Reisner rings, Hokkaido Math. J. 25(1) (1996), 137–148) on the h-vectors of Buchsbaum simplicial complexes. We then generalize the Swartz equality (E. Swartz, Lower bounds for h-vectors of k-CM, independence, and broken circuit complexes, SIAM J. Discrete Math. 18(3) (2004/05), 647–661), which in turn leads to a generalization of the above-mentioned inequalities for Cohen–Macaulay simplicial complexes in co-dimension t.


2012 ◽  
Vol 34 (1) ◽  
pp. 55-94 ◽  
Author(s):  
MARCY BARGE ◽  
CARL OLIMB

AbstractEvery sufficiently regular non-periodic space of tilings of $\mathbb {R}^d$ has at least one pair of distinct tilings that are asymptotic under translation in all the directions of some open $(d-1)$-dimensional hemisphere. If the tiling space comes from a substitution, there is a way of defining a location on such tilings at which asymptoticity ‘starts’. This leads to the definition of the branch locus of the tiling space: this is a subspace of the tiling space, of dimension at most $d-1$, that summarizes the ‘asymptotic in at least a half-space’ behavior in the tiling space. We prove that if a $d$-dimensional self-similar substitution tiling space has a pair of distinct tilings that are asymptotic in a set of directions that contains a closed $(d-1)$-hemisphere in its interior, then the branch locus is a topological invariant of the tiling space. If the tiling space is a two-dimensional self-similar Pisot substitution tiling space, the branch locus has a description as an inverse limit of an expanding Markov map on a zero- or one-dimensional simplicial complex.


2011 ◽  
Vol 63 (2) ◽  
pp. 436-459 ◽  
Author(s):  
Kotaro Mine ◽  
Katsuro Sakai

Abstract Let F be a non-separable LF-space homeomorphic to the direct sum , where . It is proved that every open subset U of F is homeomorphic to the product |K| × F for some locally finite-dimensional simplicial complex K such that every vertex v ∈ K(0) has the star St(v, K) with card St(v, K)(0) < 𝒯 = sup 𝒯n (and card K(0) ≤ 𝒯 ), and, conversely, if K is such a simplicial complex, then the product |K| × F can be embedded in F as an open set, where |K| is the polyhedron of K with the metric topology.


1964 ◽  
Vol 16 ◽  
pp. 353-357 ◽  
Author(s):  
Louis V. Quintas

Let K denote a connected finite 1-dimensional cell complex (1, p. 95), G(K) its group of homeomorphisms, and D(K) the group of homeomorphisms of K which are isotopic to the identity. The group (K) = G(K)/D(K) is a topological invariant of K and is called the homeotopy group ofK (4). K may be thought of as a linear graph (connected finite 1- dimensional simplicial complex) extended to admit loops and multiple edges and (K) as the topological analogue of the automorphism group A(L), (the permutations of vertices which preserve edge incidence relations) of a linear graph L.


Sign in / Sign up

Export Citation Format

Share Document