biharmonic submanifold
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 1)

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 710 ◽  
Author(s):  
Bang-Yen Chen

The well known Chen’s conjecture on biharmonic submanifolds in Euclidean spaces states that every biharmonic submanifold in a Euclidean space is a minimal one. For hypersurfaces, we know from Chen and Jiang that the conjecture is true for biharmonic surfaces in E 3 . Also, Hasanis and Vlachos proved that biharmonic hypersurfaces in E 4 ; and Dimitric proved that biharmonic hypersurfaces in E m with at most two distinct principal curvatures. Chen and Munteanu showed that the conjecture is true for δ ( 2 ) -ideal and δ ( 3 ) -ideal hypersurfaces in E m . Further, Fu proved that the conjecture is true for hypersurfaces with three distinct principal curvatures in E m with arbitrary m. In this article, we provide another solution to the conjecture, namely, we prove that biharmonic surfaces do not exist in any Euclidean space with parallel normalized mean curvature vectors.


2016 ◽  
Vol 27 (11) ◽  
pp. 1650089
Author(s):  
Shun Maeta

We consider a complete biharmonic submanifold [Formula: see text] in a Riemannian manifold with sectional curvature bounded from above by a non-negative constant [Formula: see text]. Assume that the mean curvature is bounded from below by [Formula: see text]. If (i) [Formula: see text], for some [Formula: see text], or (ii) the Ricci curvature of [Formula: see text] is bounded from below, then the mean curvature is [Formula: see text]. Furthermore, if [Formula: see text] is compact, then we obtain the same result without the assumption (i) or (ii). These are affirmative partial answers to Balmuş–Montaldo–Oniciuc conjecture.


Sign in / Sign up

Export Citation Format

Share Document