gaussian primes
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Jori Merikoski

AbstractIn 1998 Friedlander and Iwaniec proved that there are infinitely many primes of the form $$a^2+b^4$$ a 2 + b 4 . To show this they used the Jacobi symbol to define the spin of Gaussian integers, and one of the key ingredients in the proof was to show that the spin becomes equidistributed along Gaussian primes. To generalize this we define the cubic spin of ideals of $${\mathbb {Z}}[\zeta _{12}]={\mathbb {Z}}[\zeta _3,i]$$ Z [ ζ 12 ] = Z [ ζ 3 , i ] by using the cubic residue character on the Eisenstein integers $${\mathbb {Z}}[\zeta _3]$$ Z [ ζ 3 ] . Our main theorem says that the cubic spin is equidistributed along prime ideals of $${\mathbb {Z}}[\zeta _{12}]$$ Z [ ζ 12 ] . The proof of this follows closely along the lines of Friedlander and Iwaniec. The main new feature in our case is the infinite unit group, which means that we need to show that the definition of the cubic spin on the ring of integers lifts to a well-defined function on the ideals. We also explain how the cubic spin arises if we consider primes of the form $$a^2+b^6$$ a 2 + b 6 on the Eisenstein integers.


Author(s):  
Joshua Stucky

Abstract We generalize a Theorem of Ricci and count Gaussian primes $\mathfrak{p}$ with short interval restrictions on both the norm and the argument of $\mathfrak{p}$. We follow Heath-Brown’s method for counting rational primes in short intervals.


2020 ◽  
Vol 25 (4) ◽  
pp. 63
Author(s):  
Anthony Overmars ◽  
Sitalakshmi Venkatraman

The security of RSA relies on the computationally challenging factorization of RSA modulus N=p1 p2 with N being a large semi-prime consisting of two primes p1and p2, for the generation of RSA keys in commonly adopted cryptosystems. The property of p1 and p2, both congruent to 1 mod 4, is used in Euler’s factorization method to theoretically factorize them. While this caters to only a quarter of the possible combinations of primes, the rest of the combinations congruent to 3 mod 4 can be found by extending the method using Gaussian primes. However, based on Pythagorean primes that are applied in RSA, the semi-prime has only two sums of two squares in the range of possible squares N−1, N/2 . As N becomes large, the probability of finding the two sums of two squares becomes computationally intractable in the practical world. In this paper, we apply Pythagorean primes to explore how the number of sums of two squares in the search field can be increased thereby increasing the likelihood that a sum of two squares can be found. Once two such sums of squares are found, even though many may exist, we show that it is sufficient to only find two solutions to factorize the original semi-prime. We present the algorithm showing the simplicity of steps that use rudimentary arithmetic operations requiring minimal memory, with search cycle time being a factor for very large semi-primes, which can be contained. We demonstrate the correctness of our approach with practical illustrations for breaking RSA keys. Our enhanced factorization method is an improvement on our previous work with results compared to other factorization algorithms and continues to be an ongoing area of our research.


2020 ◽  
pp. 1-21
Author(s):  
Ryan C. Chen ◽  
Yujin H. Kim ◽  
Jared D. Lichtman ◽  
Steven J. Miller ◽  
Alina Shubina ◽  
...  
Keyword(s):  

2020 ◽  
Vol 193 (2) ◽  
pp. 183-192
Author(s):  
Bingrong Huang ◽  
Jianya Liu ◽  
Zeév Rudnick
Keyword(s):  

Author(s):  
Glyn Harman

Abstract In this paper we prove that the exact analogue of the author’s work with real irrationals and rational primes (G. Harman, On the distribution of $\alpha p$ modulo one II, Proc. London Math. Soc. (3) 72, 1996, 241–260) holds for approximating $\alpha \in \mathbb{C}\setminus \mathbb{Q}[i]$ with Gaussian primes. To be precise, we show that for such $\alpha $ and arbitrary complex $\beta $ there are infinitely many solutions in Gaussian primes $p$ to $$\begin{equation*} ||\alpha p + \beta|| <| p|^{-7/22}, \end{equation*}$$where $||\cdot ||$ denotes distance to a nearest member of $\mathbb{Z}[i]$. We shall, in fact, prove a slightly more general result with the Gaussian primes in sectors, and along the way improve a recent result due to Baier (S. Baier, Diophantine approximation on lines in $\mathbb{C}^2$ with Gaussian prime constraints, Eur. J. Math. 3, 2017, 614–649).


2019 ◽  
Vol 232 (1) ◽  
pp. 159-199 ◽  
Author(s):  
Zeév Rudnick ◽  
Ezra Waxman
Keyword(s):  

2017 ◽  
Vol 171 ◽  
pp. 449-473 ◽  
Author(s):  
Akshaa Vatwani
Keyword(s):  

2015 ◽  
Vol 53 (1) ◽  
pp. 123-133
Author(s):  
Jay Mehta ◽  
G.K. Viswanadham

Sign in / Sign up

Export Citation Format

Share Document