growth defect
Recently Published Documents


TOTAL DOCUMENTS

959
(FIVE YEARS 210)

H-INDEX

83
(FIVE YEARS 5)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262370
Author(s):  
Jordan C. Raisman ◽  
Michael A. Fiore ◽  
Lucille Tomin ◽  
Joseph K. O. Adjei ◽  
Virginia X. Aswad ◽  
...  

Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (≥ 2 μg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera.


2022 ◽  
Author(s):  
Joshua R Elmore ◽  
George L Peabody ◽  
Ramesh K Jha ◽  
Gara N Dexter ◽  
Taraka Dale ◽  
...  

Expanding the catabolic repertoire of engineered microbial bioproduction hosts enables more efficient use of complex feedstocks such as lignocellulosic hydrolysates, but the deleterious effects of existing expression systems limit the maximum carry capacity for heterologous catabolic pathways. Here we demonstrate use of a conditionally beneficial oxidative xylose catabolic pathway to improve performance of a Pseudomonas putida strain that has been engineered for growth-coupled bioconversion of glucose into the valuable bioproduct cis,cis-muconic acid. In the presence of xylose, the pathway enhances growth rate, and therefor productivity, by >60%, but the metabolic burden of constitutive pathway expression reduces the its growth rate by >20% in the absence of xylose. To mitigate this growth defect, we develop a xylose biosensor based on the XylR transcription factor from Caulobacter crescentus NA1000 to autonomously regulate pathway expression. We generate a library of engineered xylose-sensitive promoters that cover a three order-of-magnitude range of expression levels to tune pathway expression. Using structural modeling to guide mutations, we engineer XylR with two and three orders-of-magnitude reduced sensitivity to xylose and L-arabinose, respectively. A previously developed heterologous xylose isomerase pathway is placed under control of the biosensor, which improves the growth rate with xylose as a carbon source by 10% over the original constitutively expressed pathway. Finally, the oxidative xylose catabolic pathway is placed under control of the biosensor, enabling the bioproduction strain to maintain the increased growth rate in the presence of xylose, without the growth defect incurred from constitutive pathway expression in the absence of xylose. Utilizing biosensors to autonomously regulate conditionally beneficial catabolic pathways is generalizable, and will be critical for engineering bioproduction hosts bacteria with the wide range of catabolic pathways required for bioconversion of complex feedstocks.


Author(s):  
Xiaomin Shang ◽  
Changhong Wang ◽  
Li Shen ◽  
Fei Sheng ◽  
Xiaohui He ◽  
...  

Plasmodium falciparum undergoes a series of asexual replications in human erythrocytes after infection, which are effective targets for combatting malaria. Here, we report roles of an ApiAP2 transcription factor PfAP2-EXP2 (PF3D7_0611200) in the intraerythrocytic developmental cycle of P. falciparum. PfAP2-EXP2 conditional knockdown resulted in an asexual growth defect but without an appreciable effect on parasite morphology. Further ChIP-seq analysis revealed that PfAP2-EXP2 targeted genes related to virulence and interaction between erythrocytes and parasites. Especially, PfAP2-EXP2 regulation of euchromatic genes does not depend on recognizing specific DNA sequences, while a CCCTAAACCC motif is found in its heterochromatic binding sites. Combined with transcriptome profiling, we suggest that PfAP2-EXP2 is participated in the intraerythrocytic development by affecting the expression of genes related to cell remodeling at the schizont stage. In summary, this study explores an ApiAP2 member plays an important role for the P. falciparum blood-stage replication, which suggests a new perspective for malaria elimination.


2022 ◽  
Author(s):  
Peter Zuber ◽  
Michiko M. Nakano ◽  
Jessica K. Kajfasz ◽  
José A. Lemos

The agent largely responsible for initiating dental caries, Streptococcus mutans produces acetoin dehydrogenase that is encoded by the adh operon. The operon consists of the adhA and B genes (E1 dehydrogenase), adhC (E2 lipoylated transacetylase), adhD (E3 dihydrolipoamide dehydrogenase), and lplA (lipoyl ligase). Evidence is presented that AdhC interacts with SpxA2, a redox-sensitive transcription factor functioning in cell wall and oxidative stress responses. In-frame deletion mutations of adh genes conferred oxygen-dependent sensitivity to slightly alkaline pH (pH 7.2-7.6), within the range of values observed in human saliva. Growth defects were also observed when glucose or sucrose served as major carbon sources. A deletion of the adhC orthologous gene, acoC gene of Streptococcus gordonii , did not result in pH sensitivity or defective growth in glucose and sucrose. The defects observed in adh mutants were partially reversed by addition of pyruvate. Unlike most 2-oxoacid dehydrogenases, the E3 AdhD subunit bears an N-terminal lipoylation domain nearly identical to that of E2 AdhC. Changing the lipoyl domains of AdhC and AdhD by replacing the lipoate attachment residue, lysine to arginine, caused no significant reduction in pH sensitivity but the adhDK43R mutation eliminating the lipoylation site resulted in an observable growth defect in glucose medium. The adh mutations were partially suppressed by a deletion of rex , encoding an NAD + /NADH-sensing transcription factor that represses genes functioning in fermentation. spxA2 adh double mutants show synthetic growth restriction at elevated pH and upon ampicillin treatment. These results suggest a role for Adh in stress management in S. mutans . IMPORTANCE Dental caries is often initiated by Streptococcus mutans , which establishes a biofilm and a low pH environment on tooth enamel surfaces. The current study has uncovered vulnerabilities of S. mutans mutant strains that are unable to produce the enzyme complex, acetoin dehydrogenase (Adh). Such mutants are sensitive to modest increases in pH to 7.2-7.6, within the range of human saliva, while a mutant of a commensal Streptococcal species is resistant. The S. mutans adh strains are also defective in carbohydrate utilization and are hypersensitive to a cell wall-acting antibiotic. The studies suggest that Adh could be a potential target for interfering with S. mutans colonization of the oral environment.


Author(s):  
D M Tricker ◽  
P D Brown ◽  
Y Xin ◽  
T S Cheng ◽  
C T Foxon ◽  
...  

2022 ◽  
Author(s):  
Dana Aghabi ◽  
Megan Sloan ◽  
Zhicheng Dou ◽  
Olga Antipova ◽  
Alfredo Guerra ◽  
...  

Abstract Iron is essential to living cells, acting as a cofactor in a number of important enzymes in metabolism; however in the absence of correct storage iron forms dangerous oxygen radicals. In both yeast and plants, iron is stored in a membrane-bound vacuole through the action of a vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii, a pathogen of medical and veterinary importance. Here, we assess the role of VIT, and iron storage, in T. gondii. We show that iron is restricted to a compartment in the parasite that does not overlap with zinc. By deleting VIT we find a slight growth defect in vitro, however the absence of VIT leads to hypersensitivity to iron, confirming its essential role in iron detoxification in the parasite. This hypersensitivity can be rescued by scavenging of oxygen radicals. In the absence of VIT, parasites store less iron and are at a growth disadvantage when moving into an iron-depleted environment. We show parasite VIT expression is regulated by iron levels at both the transcript and protein level, and by altering the distribution of VIT within the cell. In the absence of VIT, we find that T. gondii responds by altering expression of genes with a role in iron metabolism and by increasing the activity of the antioxidant protein catalase. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009972
Author(s):  
Kanika Jain ◽  
Elizabeth A. Wood ◽  
Michael M. Cox

The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.


Author(s):  
Misaki Yasuda ◽  
Ahmed G K Habib ◽  
Kanako Sugiura ◽  
Hossain Mohammad Shamim ◽  
Masaru Ueno

Abstract Circular chromosomes have frequently been observed in tumors of mesenchymal origin. In the fission yeast Schizosaccharomyces pombe, deletion of pot1+ results in rapid telomere loss, and the resulting survivors have circular chromosomes. Fission yeast has two bromodomains and extra-terminal (BET) proteins, Bdf1 and Bdf2; both are required for maintaining acetylated histones. Here, we found that bdf2, but not bdf1, was synthetically lethal with pot1. We also obtained a temperature-sensitive bdf2-ts mutant, which can grow at high temperatures but becomes camptothecin sensitive. This suggests that Bdf2 is defective at high temperatures. The cell cycle of the pot1 bdf2-ts mutant was delayed in the G2 and/or M phase at a semi-permissive temperature. Furthermore, a temperature-sensitive mutant of mst1, which encodes histone acetyltransferase, showed a synthetic growth defect with a pot1 disruptant at a semi-permissive temperature. Our results suggest that Bdf2 and Mst1 are required for the growth of cells with circular chromosomes.


2021 ◽  
Author(s):  
Ashley Rebecca Gilliland ◽  
Christina Gavino ◽  
Samantha Gruenheid ◽  
Tracy Lyn Raivio

Citrobacter rodentium is an attaching and effacing (A/E) pathogen used as a model for enteropathogenic and enterohemorrhagic Escherichia coli infections in mice. While in the host, C. rodentium must adapt to stresses in the gastrointestinal tract such as antimicrobial peptides, pH changes, and bile salts. The Cpx envelope stress response (ESR) is a two-component system used by some bacteria to remediate stress by modulating gene expression and is necessary for C. rodentium pathogenesis in mice. To investigate genes in the Cpx regulon that may contribute to C. rodentium pathogenesis, RNA-Seq, SILAC, and microarray data from previous research was mined and the genes yebE, ygiB, bssR, and htpX were confirmed to be strongly upregulated by the presence of CpxRA using lux reporter constructs. To determine the function of these genes in vivo, knockout mutants were tested in C57Bl/6J and C3H/HeJ mice. Although none of the mutants exhibited marked virulence phenotypes, the ΔcpxRA mutant had reduced colonization and attenuated virulence, as previously determined. We also found that the absence of the Cpx ESR resulted in higher expression of the LEE master regulator, ler. In addition, we determined that the ΔcpxRA mutant had a growth defect in medium simulating the colon, as did several of the mutants bearing deletions in Cpx-upregulated genes. Overall, these results indicate that the ΔcpxRA virulence defect is not due to any single Cpx regulon gene examined. Instead, attenuation may be the result of defective growth in the colonic environment resulting from the collective impact of multiple Cpx-regulated genes.


2021 ◽  
Author(s):  
Satu Pallasaho ◽  
Aishwarya Gondane ◽  
Damien Duveau ◽  
Craig Thomas ◽  
Massimo Loda ◽  
...  

Prostate cancer (PC) is the most common cancer in men and after development of the castration-resistant PC (CRPC), there are no curative treatment options. Inactivating mutations in cyclin-dependent kinase 12 (CDK12) define an aggressive sub-type of CRPC. We hypothesized that compromised CDK12 activity leads to a significant rewiring of the CRPC cells, and that this rewiring results in actionable synthetic lethal interactions. Methods: We used combinatorial lethal screening, ChIP-seq data, RNA-seq data, global alternative splicing analysis, and comprehensive mass spectrometry (MS) profiling to understand how the compromised CDK12 activity rewires the CRPC cells. In addition, we used DepMap-, PC- and CRPC-datasets as a strategy to identify factors that are selectively required by the CDK12-mutant cells. Results: We show that inhibition of O-GlcNAc transferase (OGT) and CDK12 induces cancer cell-selective growth-defect. OGT catalyzes all nucleocytoplasmic O-GlcNAcylation, and we use unbiased MS-profiling to show that the short-term CDK12 inhibition induces hyper-O-GlcNAcylation of the spliceosome-machinery in PC and CRPC cells. Integration of DepMap- and a small scale-drug screen data reveled that depletion of CDK12 activity causes addiction to non-essential spliceosome components (CLK1/4 and SRPK1). CDK12-mutant tumors overexpress CLK1/4 and SRPK1. Finally, we show that the genomes of the CDK12-mutant tumors have lowered DNA methylation, and that CDK12 inhibition induces the expression of the genes marked by DNA methylation. Conclusions: Compromised CDK12 activity rewires DNA methylation, transcription and splicing, and this rewiring renders the affected cells addicted on the non-essential spliceosome components. We propose that inactivation of CDK12 is a biomarker for sensitivity against inhibitors of the non-essential spliceosome components just entering the clinical trials.


Sign in / Sign up

Export Citation Format

Share Document