flat plate collector
Recently Published Documents


TOTAL DOCUMENTS

438
(FIVE YEARS 131)

H-INDEX

31
(FIVE YEARS 7)

2021 ◽  
Vol 13 (23) ◽  
pp. 13491
Author(s):  
Sadam Hussain Soomro ◽  
Ravichandran Santosh ◽  
Chul-U Bak ◽  
Woo-Seung Kim ◽  
Young-Deuk Kim

A humidification–dehumidification (HDH) desalination system requires thermal energy to desalt seawater. An environmentally friendly approach to obtain thermal energy is to utilize solar energy using solar collectors. Either seawater or air (or both) are typically preheated by HDH desalination systems before these fluids are conveyed to the humidifier column. Compared with preheating only air or water, preheating both is preferred because improved performance and higher productivity are achieved. Many researchers have proposed dual preheated HDH systems utilizing two separate solar heaters/collectors for simultaneous air–seawater preheating. In this study, dual-fluid preheating is achieved using a single solar collector. The proposed simultaneous air–water solar heater (SAWSH) is a modified flat-plate collector designed for simultaneously preheating air and seawater before the fluids reach the humidifier. A thermodynamic study was conducted using formulated mathematical models based on energy and mass conservation principles. Then, the dual-fluid heating HDH system is compared with HDH systems in which only air or only water is heated. This work found that the former outperformed the latter. The daily and monthly performance levels of the system in terms of the outlet temperatures of air and water, distillate rate, and gain output ratio were calculated using the weather data of the hot and humid climate of Jeddah City, Saudi Arabia.


2021 ◽  
Vol 10 (4) ◽  
pp. 616-626
Author(s):  
Kawthar Dhif ◽  
F. Mebarek-Oudina ◽  
S. Chouf ◽  
H. Vaidya ◽  
Ali J. Chamkha

The main problem in the solar energy field is the storage of thermal energy. To divert this problem, it was suggested to use a flat-plat solar collector which also serves as a storage system; this solution will reduce the size of a refrigerating machine that we are studying. A high stored energy density is only possible if we through use latent heat of phase change. Thermal analysis has been developed for this type of storage collector for near-steady state conditions using a nanofluid heat storage substance depended on KNO3–NaNO3 binary salt mixture as PCM and a mix of Al2O3–SiO2 as nanoparticle, from which the new Hottel-Whillier-Bliss equations have been used for efficient flat plate collector. Computations were achieved for a large variety of parameters to verify the significance of the created model.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Ahmadreza Ayoobi ◽  
Mahdi Ramezanizadeh

In recent years, producing energy and potable water has become a contemporaneous issue in all areas, especially in rural and remote areas. It is due to the limitation of fossil fuels in generating energy and the daily increase of potable water topic pollution due to various development activities in the industries. Gradually, the use of renewable energies has been suggested as far as humans focus on using these energies in various activities, which is gratis and accessible in more areas without having negative anthropogenic hazards. Solar radiation has an important position in renewable energies and has played a significant role in the desalination process due to the convenience in applying and abundance in the areas with potable water shortages. However, one of the active solar stills is the coupling of conventional solar still with a flat plate collector. In this type, a flat plate collector is used to raise the temperature of saline water which increases the productivity. In this research, the solar still coupled with a flat plate collector is reviewed as the active solar still and the affecting parameters on its performance and efficiency are discussed. First, a summary of working research and their research of flat plate collectors is reviewed to be more familiar with flat plate collectors, their details, and technology. Then, solar still coupled with a flat plate collector is extensively reviewed and discussed in detail. Four types of studies on solar still coupled with a flat plate collector were done, including energy analysis, exergy analysis, economic analysis, and productivity evaluation.


Author(s):  
Dharamveer ◽  
Samsher ◽  
Anil Kumar

Abstract This paper presents performance analyses based on temperatures, thermal energy (overall), thermal exergy (overall), electrical exergy, and yield of the systems that have been investigated. In the present study, an analytical expression of N-identical partly covered photovoltaic compound parabolic concentrator collector connected in series (N-PVT-CPC-SS-HE) an active single slope solar distiller unit helically coiled heat exchanger has been found. The performance analyses of the proposed system have been executed for 0.25% concentration of CuO nanoparticles for collectors (N = 4), fluid flowing rate 0.02 kg/s in 280 kg mass of basin fluid. The system's performance is compared with N-identical partly covered photovoltaic flat plate collector connected in series (N-PVT-FPC-DS-HE) an active double slope solar distiller unit with helically coiled heat exchanger previous system ref (Sahota and Tiwari 2017). The thermal energy 112,109.1 kwh, thermal exergy 312.07 kwh, and yield 3,615.05 kg annually. It is found that enhancement daily in thermal energy of the proposed system with CuO nanoparticles than the previous system with various nanofluids CuO, Al2O3, TiO2, and water are found 16.75%, 51.13%, 61.82%, and 80.67% more significant correspondingly. The enhancement in yield of the proposed system is obtained for CuO nanoparticles greater than the previous system with CuO 11.19%, Al2O3 17.2%, TiO2 26.25%, and water 32.17% greater. The electrical exergy is almost the same as the previous system.


Sign in / Sign up

Export Citation Format

Share Document