uniform diameter
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 37)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Alexander Aleksakhin ◽  
Iryna Dubynskaya ◽  
Ilona Solyanyk ◽  
Zhanna Dombrovs’ka

Heat losses at the heating network’s distribution pipelines were identified for Karkivcommunity. Heat losses’ calculation is performed in view of the underground pipelines’ installationin non-accessible ducts. The heating system water temperature is accepted in line with the heatingnetwork temperature chart and according to the design outdoor temperature value for heatingpurposes. Specific heat losses in the network section’ pipelines are accepted at the level of standardvalues for the specified network laying method. The water flow rate at the heat pipeline sections isdefined as per the design heat loads from the buildings connected to the heat supply network. Theheat pipeline segment with uniform diameter is accepted as the rated section. The soil temperatureat the heat pipeline axis laying depth is accepted as 5°C. The heat losses at the structural networkelements are considered by 1.15 coefficient. The calculations are performed in view of the heatingsystem water flow rate and temperate changes along the heat pipeline length. While analyzing thethermal condition of the return pipelines of the community heating network, the changes in the heatcontent of the heating system water flow in the main direction pipeline during mixing with the waterflow from the branches of the main direction line are taken into account. Considering the averagetemperature of the coldest five days consecutively, the total energy loss in heating pipeline for a groupof buildings in Kharkov region are equivalent to 180.8kW.In view of the ambient air temperature changing over the heating period for Kharkiv cityclimate conditions and the current schedule for quality heat energy supply to the consumers controlthe annual heat losses in the community heating network pipelines were calculated. The soil temperature change at the heat pipeline installation depth during the heating period was notconsidered.Heat losses in the microdistrict network for the year are 2184 GJ. The data obtained can beused to compare options when developing a strategy for reforming the microdistrict heat supplysystem.


Author(s):  
Tran Duc Khanh ◽  
Vu Ha Giang ◽  
Trinh Thi Phong Huong ◽  
Vu Thanh Luan ◽  
Nguyen Thi Lan ◽  
...  

Titanium dioxide (TiO2) is widely applied in the field of pollution treatment due to its good catalytic properties and being an environmentally friendly material. In this study, TiO2 nanotubes were prepared from commercial TiO2 particles. The effects of carboxymethyl cellulose (CMC) and liquid glass (sodium silicate) on catalyst activity and catalyst adhesion on quartz tubes were investigated. Transmission microscopy (TEM), scanning microscope (SEM), X-ray diffraction (XRD), X-ray energy dispersive spectroscopy, Fourier transform infrared spectroscopy (FT-IR) were used for the characterization of the catalyst. In this study, the ethanol degradation ability of the catalyst, which was added with 0; 0.5; 1, and 1.5% liquid glass and calcined at 400 and 500oC, was determined. TiO2 nanotubes after preparation have a uniform diameter from 10-12 nm and an average length of about 150nm, specific surface area increases markedly compared to commercial granules (nearly 15 times). The results showed that CMC plays an important role in the thickness and distribution of TiO2 on the quartz surface. Liquid glass significantly affects the ethanol degradation efficiency.


2021 ◽  
Author(s):  
Liushun Wang ◽  
Dong Li ◽  
Yulan Zhou ◽  
Shaohua Fu ◽  
Yuehua Peng ◽  
...  

Abstract The transport and storage of ions within solid state structures is a fundamental limitation for fabricate more advanced electrochemical energy storage, memristor, and electrochromic devices. Crystallographic shear structure can be induced in the tungsten bronze structures composed of corner-sharing WO6 octahedra by the addition of edge-sharing NbO6 octahedra, which might provide more storage sites and more convenient transport channels for external ions such as hydrogen ions and alkali metal ions. Here, we show that Nb2O5·15WO3 nanowires with long length-diameter ratio, smooth surface, and uniform diameter have been successfully synthesized by a simple hydrothermal method. The Nb2O5·15WO3 nanowires do exhibit more advantages over h-WO3 nanowires in electrochemical hydrogen ion storage such as smaller polarization, larger capacity(71 mAh/g, at 10C, 1C = 100 mA/g), better cycle performance (remain at 99% of the initial capacity after 200 cycles at 100C) and faster H+ diffusion kinetics. Therefore, complex niobium tungsten oxide nanowires might offer great promise for the next generation of hydrogen ion batteries.


2021 ◽  
Author(s):  
AJEESH SURESH NAIR ◽  
RAJAMOHAN GANESAN

Tubes made with polymer-matrix fiber-reinforced composite materials are widely used in automobile, mechanical and aerospace engineering applications. Composite tubes are increasingly manufactured using the modern Automated Fiber Placement (AFP) technique. The ply manufacturing parameters and the tube manufacturing parameters have considerable influence on the quality of the manufactured composite tubes. Manufacturing defects and variations in the material properties are inevitable in composite tubes due to the inherent unavoidable variations in these parameters. The commonly identified manufacturing defects include voids, fiber waviness, variation in volume fraction, and fiber misalignment. These have considerable influence on the mechanical behavior and failure of the composite tube. In the present work, the effects of the fiber misalignment and the variations in the material properties on the failure behavior of uniform-diameter composite tubes subjected to combined axial and torsional loadings are determined considering the First-Ply Failure (FPF) characteristics. The first-ply failure envelopes of the composite tube are developed based on the Classical Laminate Theory and Finite Element Modeling and Analysis. Existing works in the literature are used to validate the three-dimensional finite element model of the uniform-diameter composite tube developed using the commercial software ANSYS®. The variations in the first-ply failure loading limits of the uniform-diameter composite tube made of a Carbon Fiber Reinforced Polymer (CFRP) composite material are investigated using the Monte Carlo Simulation (MCS) method, considering the random variability in the material properties and the fiber misalignment. The random variables corresponding to the material properties and the fiber misalignment are generated. For the composite tube with a sample set of simulated random variables the corresponding first-ply failure envelope is determined. The ensemble of such failure envelopes is developed based on an adequate number of simulations from which the probabilistic distributions of the first-ply failure loadings are determined. Design aspects are brought out.


2021 ◽  
Vol 36 (4) ◽  
pp. 403-409
Author(s):  
K. Iiba ◽  
W. Takarada ◽  
T. Kikutani

Abstract In the melt blowing process, the molten polymers extruded from nozzles are elongated by high-velocity and high-temperature air flow. In this study, with the aim of stabilizing the melt blowing process for producing nonwoven webs with fine diameter fibers, the effect of the control of polymer rheology by the introduction of either low melt flow rate (MFR) polypropylene (PP) or long chain branched PP (LCB-PP) to regular high MFR PP was investigated. Introduction of low MFR PP into regular PP increased shear viscosity and fibers of larger diameter were produced in the melt blowing process, while introduction of low MFR LCB-PP suppressed the elongational viscosity reduction with the increase of strain rate, and eventually spinning was stabilized. It was found that the blending of an optimum amount of LCB-PP to regular PP caused the stabilization of the melt blowing process. As a result, the formation of nonwoven webs consisting of fine fibers of rather uniform diameter distribution could be achieved.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Mohammed Kaplan ◽  
Georges Chreifi ◽  
Lauren Ann Metskas ◽  
Janine Liedtke ◽  
Cecily R Wood ◽  
...  

The ability to produce outer membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs in 13 diderm bacterial species and classified several major ultrastructures: (1) tubes with a uniform diameter (with or without an internal scaffold), (2) tubes with irregular diameter, (3) tubes with a vesicular dilation at their tip, (4) pearling tubes, (5) connected chains of vesicles (with or without neck-like connectors), (6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.


Author(s):  
Yuhan Zhang ◽  
Ting Wang ◽  
Juan Li ◽  
Xiaoming Cui ◽  
Mingxia Jiang ◽  
...  

Bone defects are difficult to repair and reconstruct as bone regeneration remains technically challenging, with exogenous factors required to accelerate this process. Biodegradable synthetic scaffolds are promising materials for stimulating bone tissue repair. In this study, we investigated whether a bilayer membrane that includes mineralized collagen (MC) and chitosan (CS) delivering berberine (BER)—a typical Chinese herbal monomer—could promote bone healing in a rat model. An MC/CS cast film was coated with polycaprolactone (PCL)/polyvinylpyrrolidone (PVP) electrospun nanofibers loaded with BER, yielding the BER@PCL/PVP-MC/CS bilayer membrane. The 3-dimensional structure had nanofibers of uniform diameter and showed good hydrophilicity; the bilayer membrane showed favorable mechanical properties. BER@PCL/PVP-MC/CS enhanced the proliferation and attachment of MC3T3-E1 cells in vitro and induced bone regeneration when implanted into a rat femoral bone defect. These findings provide evidence that BER@PCL/PVP-MC/CS has clinical potential for effective bone repair.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 860
Author(s):  
Ahmad Umar ◽  
Ahmed A. Ibrahim ◽  
Rajesh Kumar ◽  
Hassan Algadi ◽  
Hasan Albargi ◽  
...  

Herein, we report a chemi-resistive sensing method for the detection of formaldehyde (HCHO) gas. For this, α-MnO2 nanowires were synthesized hydrothermally and examined for ascertaining their chemical composition, crystal phase, morphology, purity, and vibrational properties. The XRD pattern confirmed the high crystallinity and purity of the α-MnO2 nanowires. FESEM images confirmed a random orientation and smooth-surfaced wire-shaped morphologies for as-synthesized α-MnO2 nanowires. Further, the synthesized nanowires with rounded tips had a uniform diameter throughout the length of the nanowires. The average diameter of the α-MnO2 nanowires was found to be 62.18 nm and the average length was ~2.0 μm. Further, at an optimized temperature of 300 °C, the fabricated HCHO sensor based on α-MnO2 nanowires demonstrated gas response, response, and recovery times of 19.37, 18, and 30 s, respectively.


2021 ◽  
Author(s):  
Mohammed Kaplan ◽  
Georges Chreifi ◽  
Lauren Ann Metskas ◽  
Janine Liedtke ◽  
Cecily R Wood ◽  
...  

The ability to produce membrane projections in the form of tubular membrane extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms of ~ 90 bacterial species that we have collected for various projects over the past 15 years (Jensen lab database), in addition to data generated in the Briegel lab. We identified MEs and MVs in 13 species and classified several major ultrastructures: 1) tubes with a uniform diameter (with or without an internal scaffold), 2) tubes with irregular diameter, 3) tubes with a vesicular dilation at their tip, 4) pearling tubes, 5) connected chains of vesicles (with or without neck-like connectors), 6) budding vesicles and nanopods. We also identified several protein complexes associated with these MEs and MVs which were distributed either randomly or exclusively at the tip. These complexes include a secretin-like structure and a novel crown-shaped structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize the diversity of bacterial membrane projections and lays the groundwork for future research in this field.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253311
Author(s):  
Jian Zhang ◽  
Qing Chen ◽  
Minghong Shi ◽  
Hongping Zhou ◽  
Linyun Xu

Particleboards are widely used in the artificial board market, which can be constructed from a variety of raw materials and require small amounts of energy to be produced. In the particleboard production process, forming machines play an important role as the key equipment for achieving continuous production. In recent years, airflow forming machines have received increasing attention in particleboard production lines because of their strong separation ability and low price. However, the internal flow field is complex and difficult to control, which affects the surface quality and strength of the particleboard. The most pressing technical difficulty is controlling the flow field characteristics of the airflow paver. At present, the research on this subject is conducted primarily through repeated experiments, which entail long research periods and high processing costs. To reduce human and financial costs, in this study, Computational Fluid Dynamics (CFD) is employed to investigate the flow field and the gas-solid two-phase flow field coupled with particle movement of an airflow forming machine. The accuracy of the calculation model is verified by comparing characteristic point velocities obtained from experimental analysis and a simulation. The simulation results show that in practical production, the frequency of a negative pressure fan should be greater than 27 Hz. It is necessary to set the shoulder properly, and the slab smoothness can be improved by moving the shoulder back on the premise of meeting the strength requirements of the box. The distance between the shoulders of the box body should be less than 2570 mm, and particles with uniform diameter should be added to the paving box to reduce the turbulence effect, improve the quality of particle forming and provide actual particleboard production with a solid theoretical foundation.


Sign in / Sign up

Export Citation Format

Share Document