adsorbed solution theory
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 3)

Adsorption ◽  
2021 ◽  
Author(s):  
Mauro Luberti ◽  
Roberto Mennitto ◽  
Stefano Brandani ◽  
Giulio Santori ◽  
Lev Sarkisov

AbstractIn this study seven adsorption azeotropes involving binary systems and zeolite-based adsorbents were systematically investigated. Pure component isotherms and mixed-gas adsorption data were taken from published literature except for the benzene–propene system on silicalite, which is newly presented in this work using molecular simulations. Experimental adsorbed phase composition and total amount adsorbed of the azeotropic systems were compared with the predictions of several models including: the ideal adsorbed solution theory (IAST), the heterogeneous ideal adsorbed solution theory (HIAST) and the real adsorbed solution theory (RAST) coupled with the 1-parameter Margules (1-Margules) and the van Laar equations. In the latter two models an additional loading parameter was incorporated in the expression of the excess Gibbs energy to account for the reduced grand potential dependency of the activity coefficients in the adsorbed phase. It was found that the HIAST and RAST–1-Margules models were able to predict the azeotropic behaviour of some systems with good accuracy. However, only the RAST–van Laar model consistently showed an average relative deviation below 3% compared to experimental data for both the adsorbed phase composition and the total amount adsorbed across the systems. This modified van Laar equation is therefore preferable in those engineering applications when the location of adsorption azeotropes is required with great accuracy and when there is lack of detailed characterization of the adsorbent that is needed to carry out molecular simulations.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 510
Author(s):  
Majeda Khraisheh ◽  
Fares. Almomani ◽  
Gavin Walker

The separation of C3H4/C3H6 is one of the most energy intensive and challenging operations, requiring up to 100 theoretical stages, in traditional cryogenic distillation. In this investigation, the potential application of two MOFs (SIFSIX-3-Ni and NbOFFIVE-1-Ni) was tested by studying the adsorption–desorption behaviors at a range of operational temperatures (300–360 K) and pressures (1–100 kPa). Dynamic adsorption breakthrough tests were conducted and the stability and regeneration ability of the MOFs were established after eight consecutive cycles. In order to establish the engineering key parameters, the experimental data were fitted to four isotherm models (Langmuir, Freundlich, Sips and Toth) in addition to the estimation of the thermodynamic properties such as the isosteric heats of adsorption. The selectivity of the separation was tested by applying ideal adsorbed solution theory (IAST). The results revealed that SIFSIX-3-Ni is an effective adsorbent for the separation of 10/90 v/v C3H4/C3H6 under the range of experimental conditions used in this study. The maximum adsorption reported for the same combination was 3.2 mmolg−1. Breakthrough curves confirmed the suitability of this material for the separation with a 10-min gab before the lighter C3H4 is eluted from the column. The separated C3H6 was obtained with a 99.98% purity.


Adsorption ◽  
2021 ◽  
Author(s):  
Anne Streb ◽  
Marco Mazzotti

Abstract Hydrogen as clean energy carrier is expected to play a key role in future low-carbon energy systems. In this paper, we demonstrate a new technology for coupling fossil-fuel based hydrogen production with carbon capture and storage (CCS): the integration of CO2 capture and H2 purification in a single vacuum pressure swing adsorption (VPSA) cycle. An eight step VPSA cycle is tested in a two-column lab-pilot for a ternary CO2–H2–CH4 stream representative of shifted steam methane reformer (SMR) syngas, while using commercial zeolite 13X as adsorbent. The cycle can co-purify CO2 and H2, thus reaching H2 purities up to 99.96%, CO2 purities up to 98.9%, CO2 recoveries up to 94.3% and H2 recoveries up to 81%. The key decision variables for adjusting the separation performance to reach the required targets are the heavy purge (HP) duration, the feed duration, the evacuation pressure and the flow rate of the light purge (LP). In contrast to that, the separation performance is rather insensitive towards small changes in feed composition and in HP inlet composition. Comparing the experimental results with simulation results shows that the model for describing multi-component adsorption is critical in determining the predictive capabilities of the column model. Here, the real adsorbed solution theory (RAST) is necessary to describe all experiments well, whereas neither extended isotherms nor the ideal adsorbed solution theory (IAST) can reproduce all effects observed experimentally.


2020 ◽  
Vol 11 (3) ◽  
pp. 643-655 ◽  
Author(s):  
Arpan Kundu ◽  
Kaido Sillar ◽  
Joachim Sauer

A new mixing rule (geometric mean) is proposed with substantial improvements compared to the widely used ideal adsorbed solution theory for adsorbates with strong lateral interactions.


Sign in / Sign up

Export Citation Format

Share Document