torus action
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 19)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Christine Escher ◽  
Catherine Searle

Abstract Let ℳ 0 n {\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} , then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} . Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.


Author(s):  
Jacob Cable

AbstractWe calculate Chow quotients of some families of symmetric T-varieties. In complexity two we obtain new examples of Kähler–Einstein metrics by bounding the symmetric alpha invariant of their orbifold quotients. As an additional application we determine the homeomorphism class of the orbit space of the compact torus action.


Author(s):  
Roman Krutowski ◽  
Taras Panov

We describe the basic Dolbeault cohomology algebra of the canonical foliation on a class of complex manifolds with a torus symmetry group. This class includes complex moment-angle manifolds, LVM- and LVMB-manifolds and, in most generality, complex manifolds with a maximal holomorphic torus action. We also provide a DGA model for the ordinary Dolbeault cohomology algebra. The Hodge decomposition for the basic Dolbeault cohomology is proved by reducing to the transversely Kähler (equivalently, polytopal) case using a foliated analogue of toric blow-up.


2021 ◽  
Vol 15 (3) ◽  
pp. 455-488
Author(s):  
Graham Denham ◽  
Delphine Pol ◽  
Mathias Schulze ◽  
Uli Walther

Author(s):  
Hiroaki Ishida ◽  
Roman Krutowski ◽  
Taras Panov

Abstract We describe the basic cohomology ring of the canonical holomorphic foliation on a moment-angle manifold, LVMB-manifold, or any complex manifold with a maximal holomorphic torus action. Namely, we show that the basic cohomology has a description similar to the cohomology ring of a complete simplicial toric variety due to Danilov and Jurkiewicz. This settles a question of Battaglia and Zaffran, who previously computed the basic Betti numbers for the canonical holomorphic foliation in the case of a shellable fan. Our proof uses an Eilenberg–Moore spectral sequence argument; the key ingredient is the formality of the Cartan model for the torus action on a moment-angle manifold. We develop the concept of transverse equivalence as an important tool for studying smooth and holomorphic foliated manifolds. For an arbitrary complex manifold with a maximal torus action, we show that it is transverse equivalent to a moment-angle manifold and therefore has the same basic cohomology.


Author(s):  
Małgorzata Mikosz ◽  
Andrzej Weber

Abstract We revisit the construction of elliptic class given by Borisov and Libgober for singular algebraic varieties. Assuming torus action we adjust the theory to the equivariant local situation. We study theta function identities having a geometric origin. In the case of quotient singularities $${\mathbb {C}}^n/G$$ C n / G , where G is a finite group the theta identities arise from McKay correspondence. The symplectic singularities are of special interest. The Du Val surface singularity $$A_n$$ A n leads to a remarkable formula.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Hiroaki Kanno

Abstract We review the problem of Bogomol’nyi–Prasad–Sommerfield (BPS) state counting described by the generalized quiver matrix model of Atiyah–Drinfield–Hitchin–Manin type. In four dimensions the generating function of the counting gives the Nekrasov partition function, and we obtain a generalization in higher dimensions. By the localization theorem, the partition function is given by the sum of contributions from the fixed points of the torus action, which are labeled by partitions, plane partitions and solid partitions. The measure or the Boltzmann weight of the path integral can take the form of the plethystic exponential. Remarkably, after integration the partition function or the vacuum expectation value is again expressed in plethystic form. We regard it as a characteristic property of the BPS state counting problem, which is closely related to the integrability.


Sign in / Sign up

Export Citation Format

Share Document