query complexity
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 63)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
pp. 1-22
Author(s):  
Amit Levi ◽  
Ramesh Krishnan S. Pallavoor ◽  
Sofya Raskhodnikova ◽  
Nithin Varma

We investigate sublinear-time algorithms that take partially erased graphs represented by adjacency lists as input. Our algorithms make degree and neighbor queries to the input graph and work with a specified fraction of adversarial erasures in adjacency entries. We focus on two computational tasks: testing if a graph is connected or ε-far from connected and estimating the average degree. For testing connectedness, we discover a threshold phenomenon: when the fraction of erasures is less than ε, this property can be tested efficiently (in time independent of the size of the graph); when the fraction of erasures is at least ε, then a number of queries linear in the size of the graph representation is required. Our erasure-resilient algorithm (for the special case with no erasures) is an improvement over the previously known algorithm for connectedness in the standard property testing model and has optimal dependence on the proximity parameter ε. For estimating the average degree, our results provide an “interpolation” between the query complexity for this computational task in the model with no erasures in two different settings: with only degree queries, investigated by Feige (SIAM J. Comput. ‘06), and with degree queries and neighbor queries, investigated by Goldreich and Ron (Random Struct. Algorithms ‘08) and Eden et al. (ICALP ‘17). We conclude with a discussion of our model and open questions raised by our work.


10.1142/10525 ◽  
2022 ◽  
Author(s):  
Mario Szegedy ◽  
Ilan Newman ◽  
Troy Lee
Keyword(s):  

Semantic Web ◽  
2022 ◽  
pp. 1-24
Author(s):  
Marlene Goncalves ◽  
David Chaves-Fraga ◽  
Oscar Corcho

With the increase of data volume in heterogeneous datasets that are being published following Open Data initiatives, new operators are necessary to help users to find the subset of data that best satisfies their preference criteria. Quantitative approaches such as top-k queries may not be the most appropriate approaches as they require the user to assign weights that may not be known beforehand to a scoring function. Unlike the quantitative approach, under the qualitative approach, which includes the well-known skyline, preference criteria are more intuitive in certain cases and can be expressed more naturally. In this paper, we address the problem of evaluating SPARQL qualitative preference queries over an Ontology-Based Data Access (OBDA) approach, which provides uniform access over multiple and heterogeneous data sources. Our main contribution is Morph-Skyline++, a framework for processing SPARQL qualitative preferences by directly querying relational databases. Our framework implements a technique that translates SPARQL qualitative preference queries directly into queries that can be evaluated by a relational database management system. We evaluate our approach over different scenarios, reporting the effects of data distribution, data size, and query complexity on the performance of our proposed technique in comparison with state-of-the-art techniques. Obtained results suggest that the execution time can be reduced by up to two orders of magnitude in comparison to current techniques scaling up to larger datasets while identifying precisely the result set.


2022 ◽  
pp. 1-23
Author(s):  
Zhenghang Cui ◽  
Issei Sato

Abstract Noisy pairwise comparison feedback has been incorporated to improve the overall query complexity of interactively learning binary classifiers. The positivity comparison oracle is extensively used to provide feedback on which is more likely to be positive in a pair of data points. Because it is impossible to determine accurate labels using this oracle alone without knowing the classification threshold, existing methods still rely on the traditional explicit labeling oracle, which explicitly answers the label given a data point. The current method conducts sorting on all data points and uses explicit labeling oracle to find the classification threshold. However, it has two drawbacks: (1) it needs unnecessary sorting for label inference and (2) it naively adapts quick sort to noisy feedback. In order to avoid these inefficiencies and acquire information of the classification threshold at the same time, we propose a new pairwise comparison oracle concerning uncertainties. This oracle answers which one has higher uncertainty given a pair of data points. We then propose an efficient adaptive labeling algorithm to take advantage of the proposed oracle. In addition, we address the situation where the labeling budget is insufficient compared to the data set size. Furthermore, we confirm the feasibility of the proposed oracle and the performance of the proposed algorithm theoretically and empirically.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Kamil Khadiev ◽  
Aliya Khadieva

We consider online algorithms with respect to the competitive ratio. In this paper, we explore one-way automata as a model for online algorithms. We focus on quantum and classical online algorithms. For a specially constructed online minimization problem, we provide a quantum log-bounded automaton that is more effective (has less competitive ratio) than classical automata, even with advice, in the case of the logarithmic size of memory. We construct an online version of the well-known Disjointness problem as a problem. It was investigated by many researchers from a communication complexity and query complexity point of view.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Suman Dutta ◽  
Subhamoy Maitra ◽  
Chandra Sekhar Mukherjee

<p style='text-indent:20px;'>Here we revisit the quantum algorithms for obtaining Forrelation [Aaronson et al., 2015] values to evaluate some of the well-known cryptographically significant spectra of Boolean functions, namely the Walsh spectrum, the cross-correlation spectrum, and the autocorrelation spectrum. We introduce the existing 2-fold Forrelation formulation with bent duality-based promise problems as desirable instantiations. Next, we concentrate on the 3-fold version through two approaches. First, we judiciously set up some of the functions in 3-fold Forrelation so that given oracle access, one can sample from the Walsh Spectrum of <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula>. Using this, we obtain improved results than what one can achieve by exploiting the Deutsch-Jozsa algorithm. In turn, it has implications in resiliency checking. Furthermore, we use a similar idea to obtain a technique in estimating the cross-correlation (and thus autocorrelation) value at any point, improving upon the existing algorithms. Finally, we tweak the quantum algorithm with the superposition of linear functions to obtain a cross-correlation sampling technique. This is the first cross-correlation sampling algorithm with constant query complexity to the best of our knowledge. This also provides a strategy to check if two functions are uncorrelated of degree <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula>. We further modify this using Dicke states so that the time complexity reduces, particularly for constant values of <inline-formula><tex-math id="M3">\begin{document}$ m $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 2 (4) ◽  
pp. 1-9
Author(s):  
Scott Aaronson

I offer a case that quantum query complexity still has loads of enticing and fundamental open problems—from relativized QMA versus QCMA and BQP versus IP , to time/space tradeoffs for collision and element distinctness, to polynomial degree versus quantum query complexity for partial functions, to the Unitary Synthesis Problem and more.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1649
Author(s):  
Yuanye Zhu ◽  
Zeguo Wang ◽  
Bao Yan ◽  
Shijie Wei

The quantum search algorithm is one of the milestones of quantum algorithms. Compared with classical algorithms, it shows quadratic speed-up when searching marked states in an unsorted database. However, the success rates of quantum search algorithms are sensitive to the number of marked states. In this paper, we study the relation between the success rate and the number of iterations in a quantum search algorithm of given λ=M/N, where M is the number of marked state and N is the number of items in the dataset. We develop a robust quantum search algorithm based on Grover–Long algorithm with some uncertainty in the number of marked states. The proposed algorithm has the same query complexity ON as the Grover’s algorithm, and shows high tolerance of the uncertainty in the ratio M/N. In particular, for a database with an uncertainty in the ratio M±MN, our algorithm will find the target states with a success rate no less than 96%.


2021 ◽  
Vol 392 ◽  
pp. 108043
Author(s):  
Dmitrii Zhelezov ◽  
Dömötör Pálvölgyi
Keyword(s):  

2021 ◽  
Vol 182 (4) ◽  
pp. 321-344
Author(s):  
Xie Zhengwei ◽  
Qiu Daowen ◽  
Cai Guangya ◽  
Jozef Gruska ◽  
Paulo Mateus

The goal in the area of functions property testing is to determine whether a given black-box Boolean function has a particular given property or is ɛ-far from having that property. We investigate here several types of properties testing for Boolean functions (identity, correlations and balancedness) using the Deutsch-Jozsa algorithm (for the Deutsch-Jozsa (D-J) problem) and also the amplitude amplification technique. At first, we study here a particular testing problem: namely whether a given Boolean function f, of n variables, is identical with a given function g or is ɛ-far from g, where ɛ is the parameter. We present a one-sided error quantum algorithm to deal with this problem that has the query complexity O(1ε). Moreover, we show that our quantum algorithm is optimal. Afterwards we show that the classical randomized query complexity of this problem is Θ(1ε). Secondly, we consider the D-J problem from the perspective of functional correlations and let C(f, g) denote the correlation of f and g. We propose an exact quantum algorithm for making distinction between |C(f, g)| = ɛ and |C(f, g)| = 1 using six queries, while the classical deterministic query complexity for this problem is Θ(2n) queries. Finally, we propose a one-sided error quantum query algorithm for testing whether one Boolean function is balanced versus ɛ-far balanced using O(1ε) queries. We also prove here that our quantum algorithm for balancedness testing is optimal. At the same time, for this balancedness testing problem we present a classical randomized algorithm with query complexity of O(1/ɛ2). Also this randomized algorithm is optimal. Besides, we link the problems considered here together and generalize them to the general case.


Sign in / Sign up

Export Citation Format

Share Document